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An NCME Instructional Module on Subscores

Sandip Sinharay, Gautam Puhan, and Shelby J. Haberman, Educational Testing Service

The purpose of this ITEMS module is to provide an introduction to subscores. First, examples of
subscores from an operational test are provided. Then, a review of methods that can be used to
examine if subscores have adequate psychometric quality is provided. It is demonstrated, using
results from operational and simulated data, that subscores have to be based on a sufficient
number of items and have to be sufficiently distinct from each other to have adequate
psychometric quality. It is also demonstrated that several operationally reported subscores do not
have adequate psychometric quality. Recommendations are made for those interested in reporting
subscores for educational tests.
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What Are Subscores and Why Should Anyone Care About
Them?
Figure 1 shows a hypothetical score report of an imaginary ex-
aminee (Mary D. Poppins) on the Elementary Education: Con-
tent Knowledge test that is designed for prospective teach-
ers of children in primary through upper elementary school
grades (Educational Testing Service, 2008). This test con-
tains only multiple-choice (MC) items and was considered
in Sinharay (2010) and Puhan, Sinharay, Haberman, and
Larkin (2010). There are four subareas/categories covered
in the test: language arts/reading, mathematics, social stud-
ies, and science. The score report shows the total (scaled)
score earned by Mary. The bottom portion of the score report
shows the raw points (or scores) earned by Mary on the dif-
ferent categories of the test. The figure also shows the raw
points available (or, the total number of items, as this is a MC
test) in each category, which is 30 for all categories, and the
range of scores obtained by the middle 50% of the population
of examinees who took the test form within a certain time-
period (“average performance range”). The bottom portion
of the score report represents a typical subscore report for
examinees—the scores for the categories are the subscores.
For example, Mary obtained a subscore of 12 on mathematics
and a subscore of 17 on science. The common perception is
that (a) subscores provide trustworthy information about the
examinee’s strengths and weaknesses, and (b) the examinee
will work harder on the categories on which she performed
poorly and hence improve in those areas. For example, Mary
scored only 12 out of a maximum possible 30 on mathematics
and it is expected that she would work harder on the content
of this area and improve. See Figures 17–21 of Goodman and
Hambleton (2004) for examples of several operational score
reports that include subscores.
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The nine panels of Figure 2 show the subscores of nine
examinees on one recent form of the Elementary Education:
Content Knowledge test. We will use these data on several
occasions in this module. The total scores of these exami-
nees, shown in the titles of the panels, are the 10th, 20th, . . .,
and 90th percentiles of the distribution of the total scores for
the form. The subscores are shown using vertical bars (ex-
planation of the solid squares in the panels will be provided
later). Note that the subscores shown for the examinee with
total score = 75 in Figure 2 are identical to those of Mary D.
Poppins. The values of the average performance range in
Figure 1 indicate that the language arts/reading subscore is
larger than the other subscores on an average. The means of
the subscores are 25.0, 19.4, 17.0, and 17.2, respectively. Fig-
ure 2 shows several interesting patterns. For example, the ex-
aminee whose total score is 62 performed considerably better
in social studies than in mathematics while the pattern is the
opposite for the examinee with a total score of 84 and there is
another examinee, one with total score of 91, who performed
comparatively poorly in mathematics like Mary. Although the
subscores in Figure 1 represent four different subject areas, it
is possible to define subscore as scores on subsections within
a single subject area (e.g., algebra and geometry subsections
on a mathematics test) or in any other way the test develop-
ers think is appropriate. Wainer, Sheehan, and Wang (2000)
gave examples of how the same test can be used to report dif-
ferent sets of subscores. For example, for the same test, they
considered a set of seven subscores based on content clas-
sification (science, fine arts, mathematics, reading/language
arts, sociology, and physical education) and another set of ten
subscores based on the primary skill area addressed by the
items (content knowledge, solving social/emotional/affective
and classroom management problems, selecting alternative
instructional strategies, etc.).

Subscores are of increasing interest in educational testing
due to their potential remedial and instructional benefits.
According to the National Research Council report “Know-
ing What Students Know” (2001), the target of assessment
is to provide particular information about an examinee’s
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EXAMINEE SCORE REPORT 

BACKGROUND INFROMATION 
Examinee’s N ame: Poppins, Mary D 
Social Security Number: 111-11-1111 
Sex: F 
Candidate ID Number: 11111111 
Date of Birth: 12/14/1970 

EDUCATIONAL INFORMATION 
College Where Relevant Training was Received: XYZ University 
Undergraduate Major: Mathematics 
Graduate Major: Educational Policy 
Educational Level: Masters Degree 
GPA: 3.5

SCORE RECIPIENT(S) REQUESTED  
Code # Recipient Name 
R4321 XYZ University 

CURRENT TEST DATE: 11/08/2007 
Test Code Test Name Your Score  Possible 

Score Range 
Average

Performance Range 
01234 Elementary 

Education: 
Content
Knowledge

155 100-200 125-160 

DETAILED INFORMATION FOR 11/08/2007 TEST DATE 

TEST CATEGORY Raw Points 
Earned

Raw Points 
Available

Average
Performance Range 

ELEMENTARY EDUCATION: 
CONTENT KNOWLEDGE 

1. Language arts/Reading 
2. Mathematics 
3. Social studies 
4. Science

29
12
17
17

30
30
30
30

23-27
15-24
14-20
14-20

FIGURE 1. A hypothetical score report for an examinee showing performance on the total test and the different test categories.

knowledge, skill, and abilities. Subscores have the poten-
tial to provide such information. The U.S. Government’s No
Child Left Behind (NCLB) Act of 2001 demands, among other
things, that students should receive diagnostic reports that
allow teachers to address their specific academic needs; sub-
scores could be used in such a diagnostic report. Naturally,
there is substantial pressure on testing programs to report
subscores, both at the individual examinee level and at ag-
gregate levels such as at the level of institutions or states.
Subscores are reported by several large-scale testing pro-
grams, such as SAT R©, ACT R©, Praxis, and LSAT.

The purpose of this module is to review the research, most
of which is recent, on subscores. A brief review of several
methods that can be used to examine the psychometric qual-
ity of subscores is provided, followed by a closer examina-
tion of some existing subscores and their usefulness. We
then provide a brief discussion of alternatives to reporting
subscores. Finally, some recommendations are made for re-
searchers and practitioners interested in the issue of subscore
reporting.

Examining Whether Subscores Have Adequate
Psychometric Quality
Despite the demand for and apparent usefulness of subscores,
they have to satisfy certain quality standards in order for
them to be reported. Standard 5.12 of the Standards for

Educational and Psychological Testing (American Educa-
tional Research Association [AERA], American Psychological
Association [APA], & National Council on Measurement in
Education [NCME], 1999) states that “Scores should not be
reported for individuals unless the validity, comparability,
and reliability of such scores have been established.” The
standard applies to subscores as well. Further, Standard 1.12
of the Standards for Educational and Psychological Test-
ing (AERA, APA, & NCME, 1999) states that if a test pro-
vides more than one score, the distinctiveness of the separate
scores should be demonstrated. These quality standards are
not too demanding if one considers that just as inaccurate
information at the total test score level may lead to decisions
with damaging consequences, inaccurate information at the
subscore level can also lead to incorrect remediation deci-
sions resulting in large and needless expenses for examinees,
states, or institutions.

Why the Subscores from Educational Tests Often Lack
Psychometric Quality
It is not uncommon to observe decent reliabilities of sub-
scores on personality inventories designed to measure spe-
cific personality traits, such as anxiety, hostility, trust, etc.
For example, Goldberg (1999) reported that for the re-
vised NEO Personality Inventory, the reliabilities of the 30
subscores, each of which consisted of eight items, ranged
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FIGURE 2. The subscores (vertical bars) and weighted averages (solid squares) of nine examinees from one form of the Elementary Education:
Content Knowledge test.

from .61 to .85 and the mean reliability was .75. Considering
the relatively small number of items in each of the subscales,
these reliabilities seem reasonably high for diagnostic use.
Personality inventories are often designed to measure fewer
but much more focused traits, such as aggression and gre-
gariousness, and are usually reliable. The subscores found in
educational measurement often consist of only a few items.
For example, the state test score report shown in Figure 20
of Goodman and Hambleton (2004) includes seven subscores
that are based on only five items each. Such scores are most
often outcomes of retrofitting, which refers to reporting of
subscores from tests that were designed to measure only one
overall skill. These scores are usually provided to comply with
clients’ requests for more diagnostic information on exami-
nees. Because these tests have been constructed specifically

to measure a single construct, little reason exists to expect
useful subscores. In addition, practitioners often ignore the
fact that a subscore in educational measurement refers to a
domain area that is usually much broader than those covered
by subscores in personality inventories. Consider a certifica-
tion test for prospective teachers of elementary education
that measures content knowledge in domain areas such as
mathematics, science, and reading. It is often observed that,
within each domain area, all items do not measure a sin-
gle ability. For example, the mathematics domain may have
numerous smaller sub-domains such as problem solving, alge-
bra, geometry, data organization using pie charts, bar graphs,
etc. Therefore a substantial number of items will be typi-
cally required in each sub-domain to make the mathematics
subscore reliable.
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Sinharay and Haberman (2008b) discussed that data may
not provide information as fine-grained as suggested by cog-
nitive theory or as hoped for by the testing practitioner. A
theory of response processes based on cognitive psychology
may suggest several skills, but a test includes a limited num-
ber of items and the test may not have enough items to provide
adequate information about all of these skills. For example,
for the iSkillsTM test (e.g., Katz, Attali, Rijmen, & Williamson,
2008), an expert committee identified seven performance
areas that they thought comprised Information and Commu-
nications Technology literacy skill. However, a factor analysis
of the data revealed only one factor and confirmatory factor
models in which the factors corresponded to performance ar-
eas or a combination thereof did not fit the data (Katz et al.,
2008). As a result, only an overall Information and Commu-
nications Technology literacy score is reported for the test.
Clearly, an investigator attempting to report subscores has to
make an informed judgment on how much evidence the data
can reliably provide and report only as much information as
is reliably supported.

Methods
Researchers have suggested several methods for examining if
subscores have adequate psychometric quality—those meth-
ods are discussed next.

Application of Factor Analysis

Several researchers, such as Stone, Ye, Zhu, & Lane (2010),
Wainer et al. (2001), and Sinharay, Haberman, and Puhan
(2007) employed factor analysis to determine whether sub-
scores are distinct enough to be reported. The purpose of
factor analysis is to discover simple patterns in the pattern
of relationships among several observed variables. In partic-
ular, it seeks to discover if the observed variables can be
explained largely or entirely in terms of a small number of
variables called factors. A simple factor-analytic approach to
evaluate whether the subscores are distinct enough would be
to compute the eigenvalues from the correlation matrix of
the subscores (or from the correlation matrix of the items).
If most of the eigenvalues computed from the correlation ma-
trix of the subscores are smaller than 1 or if a scree plot of
these eigenvalues shows that the eigenvalues abruptly levels
out at some point, then the number of factors in the data is
less than the number of subscores and the claim of several
distinct subscores is probably not justified. The presence of
multiple factors, that is, multiple large eigenvalues, would
support the reporting of subscores. For example, Sinharay et
al. (2007) computed the eigenvalues from the 6 × 6 correla-
tion matrix of six reported subscores from two forms of a basic
skills test. They found that the largest eigenvalue was 4.3 for
both forms while the remaining five eigenvalues were smaller
than .5, suggesting that the test is essentially unidimensional
and the claim of 6 distinct subscores is probably not justified
(see Figure 3 for a scree plot of the six eigenvalues from
one form). Similarly, Stone et al. (2010) reported, using an
exploratory factor analysis method on the inter-item corre-
lation matrix, the presence of only one factor in the Spring
2006 assessment of the Delaware State Testing Program 8th
grade mathematics assessment—so subscores should not be
reported for the assessment. Use of factor analysis involves
several issues such as determining whether to perform the

FIGURE 3. A scree plot of the eigenvalues computed from the cor-
relations between the six subscores of a basic skills test.

factor analysis at the item level or at the item parcel level or
the subscore level, determining whether to use exploratory
or confirmatory factor analysis, and determining which tools
to use to determine the number of factors.

Application of the Beta-Binomial Model

Harris and Hanson (1991) suggested the method of fitting a
mathematical model named the beta-binomial model (Lord,
1965) to the observed subscore distributions to determine
if the subscores have added value over and beyond the to-
tal score. Consider a test with two subscores. If the bivariate
distribution of the two subscores computed under the assump-
tion that the corresponding true subscores are functionally
related provides an adequate fit to the observed bivariate
distribution of subscores, the true subscores are functionally
related and therefore do not provide any added value. Har-
ris and Hanson used a chi-square-type statistic in their data
example to determine the goodness of fit of the bivariate dis-
tribution of the two subscores under the assumption that the
corresponding true subscores are functionally related to the
observed bivariate distribution of subscores.

Fitting of Multidimensional Item Response Theory Models

Another way to examine if subscores have added value is to
fit a multidimensional item response theory (MIRT) model
(e.g., Reckase, 1997; Ackerman, Gierl, & Walker, 2003) to the
data. MIRT is a tool to model examinee responses to a test
that measures more than one ability, for example, a test that
measures both mathematical and verbal ability. In MIRT, the
probability of a correct item response is a function of several
abilities, rather than a single measure of ability. To examine
if subscores have added value, one can perform a statistical
test of whether a MIRT model provides a better fit to the data
than a unidimensional IRT model. See von Davier (2008) for
a demonstration of this sort of use of MIRT.

Application of DIMTEST and DETECT

Researchers such as Ackerman and Shu (2009) used dimen-
sionality assessment software programs such as DIMTEST
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(Stout, 1987) and DETECT (Zhang & Stout, 1999) to deter-
mine the usefulness of subscores. DETECT uses an algorithm
that searches through all of the possible item cluster par-
titions to find the one that maximizes the DETECT statis-
tic. Based on results from a simulation study, Kim (1994)
provided guidelines to interpret the DETECT statistic. Ac-
cording to these guidelines, if the DETECT statistic is less
than .10, then the data can be considered as unidimensional.
Values between .10 and .50 would indicate a weak amount
of dimensionality, values between .51 and 1.00 would indi-
cate a moderate amount of dimensionality, and values higher
than 1.00 would indicate a strong amount of dimensionality.
DIMTEST implements a hypothesis testing procedure to eval-
uate the lack of unidimensionality in data from a test. It as-
sesses the statistical significance of the possible dimensional
distinctiveness between two specified subtests (the Assess-
ment Subtest or AT and the Partitioning Subtest or PT). The
test statistic T calculated by DIMTEST represents the degree
of dimensional distinctiveness between these two specified
subsets. For example, if the testing practitioner wants to test
if the math items on a general ability test are dimensionally
distinct from the rest of the items in the test, then the math
items can form the assessment subtest and the remaining
items can form the partitioning subtest and if the DIMTEST
index T is significant, it would indicate that the two subsets
are dimensionally distinct.

Application of the Classical-Test-Theory-Based Method of
Haberman

Haberman (2008a), taking a classical test theory (CTT) view-
point, assumed that a reported subscore is intended to be an
estimate of the true subscore st and considered the following
estimates of the true subscore:

• An estimate ss = s̄ + α(s − s̄ ) based on the observed
subscore s, where s̄ is the average subscore for the sample
of examinees and α is the reliability of the subscore.

• An estimate sx = s̄ +c(x − x̄) based on the observed total
score x, where x̄ is the average total score and c is a constant
that depends on the reliabilities and standard deviations
of the subscore and the total score and the correlations
between the subscores.

Let us consider the mathematics subscore from the form of
the Elementary Education: Content Knowledge test consid-
ered earlier. The mean and reliability of the subscore were
19.4 and .85, respectively. The mean and reliability of the total
test score were 78.6 and .91, respectively. Further, the stan-
dard deviation of the mathematics subscore and the total test
were 3.4 and 14.7, respectively and the constant c = .31 was
calculated using formulas given in Haberman (2008a) and in
the self-test later. Thus, for Mary D. Poppins, who obtained a
mathematics subscore of 12 (i.e., 2.2 standard deviation less
than the subscore mean) and a total score of 75 (i.e., only
.2 standard deviation less than the total score mean), the
estimate of the true subscore based on her observed subscore
would be 19.4 + .85 (12 − 19.4) = 13.1, and the estimate
of the true subscore based on her observed total score would
be 19.4 + .31 (75 − 78.6) = 18.3, respectively.

Because Mary’s mathematics subscore is unexpectedly low
given her observed total score, an estimate of her true mathe-
matics subscore based on her observed mathematics subscore
is much lower than an estimate based on her observed total
score.

To determine whether subscores have added value over the
total score, Haberman (2008a) suggested the use of the pro-
portional reduction in mean squared error or PRMSE. Compu-
tational details about the method can be found in Haberman.
The PRMSESs lie between 0 and 1. The larger the PRMSE, the
more accurate is the corresponding estimate. A larger PRMSE
is equivalent to a smaller mean squared error in estimating
the true subscore and hence is desirable. We denote the
PRMSE for ss and sx as PRMSEs and PRMSEx , respectively.
The quantity PRMSEs can be shown to be exactly equal to the
reliability of the subscore. Haberman recommended that the
subscore “provides added value over the total score” if and
only if PRMSEs is larger than PRMSEx ; that is, the subscore
“provides added value over the total score” if and only if the
observed subscore performs better than the observed total
score in terms of mean squared error in estimating the true
subscore. Mathematically, PRMSEs is larger than PRMSEx if
and only if the correlation between the true subscore and
the observed subscore is larger than the correlation between
the true subscore and observed total score. Sinharay et al.
(2007) discussed why this strategy suggested by Haberman is
reasonable and how it ensures that a subscore satisfies pro-
fessional standards. Conceptually, if the subscore is highly
correlated with the total score, i.e., the subscore and the to-
tal score measure the same basic underlying skill(s), then
the subscore does not provide any added value over what is
already provided by the total score. A subscore is more likely
to have added value if it has high reliability and it is distinct
from the other subscores (Haberman, 2008a; Sinharay, 2010).
For the aforementioned form from the Elementary Education:
Content Knowledge test, the values of PRMSEs or subscore
reliability are .71, .85, .67, and .72, respectively, while the
values of PRMSEx are .72, .76, .74, and .79, respectively. Thus
only the mathematics subscore of the test has added value.

The computations involved in the method of Haberman
(2008a) are simple and involve only the sample variances,
correlations, and reliabilities of the total score and the sub-
scores. Some details of the computations are provided in two
questions of the self-test. The computations of the PRMSEs
involve the disattenuated correlations among the subscores,
where the disattenuated correlation between two subscores
is equal to the simple correlation between them divided by
the product of the square roots of the reliabilities of the two
subscores. For some data sets, it is possible to have disatten-
uated correlations between subscores larger than 1, typically
because one or both reliabilities are low, and, as a result,
PRMSEs larger than 1. In these cases, it is concluded that the
subscores do not have any added value over the total score.

How Often Do Subscores Have Adequate Psychometric
Quality?
Literature Review

Sinharay (2010) performed an extensive survey regarding
whether subscores or section scores have added value over
the total score for data from 25 operational tests, where the
value added by a subscore was determined by the method of
Haberman (2008a). Of the 25 tests, 16 had no subscores with
added value even though several of them report subscores
operationally. Even among the remaining nine tests, all of
which had at least an average of 24 items contributing to
each subscore, only some of the subscores had added value.
Sinharay also performed a detailed simulation study to find
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out when subscores can be expected to have added value.
The simulation study showed that in order to have added
value, subscores have to (a) be based on a sufficient number
of (roughly 20) items, and (b) be sufficiently distinct—the
disattenuated correlation between subscores has to be less
than about .85.

Stone et al. (2010) reported, using an exploratory factor
analysis method, the presence of only one factor in the Spring
2006 assessment of the DSTP 8th grade mathematics assess-
ment. Harris and Hanson (1991), using their aforementioned
method of fitting beta-binomial distributions to the observed
subscore distributions, found subscores to have little added
value for the English and mathematics tests from the P-ACT+
examination. Wainer et al. (2001) performed factor analysis
and an examination of the reliability of the subscores on data
from one administration of the Just-in-Time Examination con-
ducted by the American Production and Inventory Control So-
ciety (APICS) certification. They concluded that the six sub-
scales in the APICS examination did not appear to measure
different dimensions of individual differences. However, they
found a tryout form of the North Carolina Test of Computer
Skills that has four subscales to be not as unidimensional as
the APICS examination and an application of the method of
Haberman (2008a) to the data reveals that three of the four
subscores have added value over the total score. Wainer et al.
(2000) considered the problem of constructing skills-based
subscores for the Education in the Elementary School Assess-
ment that is designed for prospective teachers of children
in primary grades (K-3) or upper-elementary/middle-school
grades (4–8). They concluded, mostly from an analysis of re-
liability of the subscores, that the “test’s items were fiercely
unidimensional, and so any set of subscales that were chosen
would yield essentially the same information.” Ackerman and
Shu (2009), using DIMTEST and DETECT, found subscores
not to be useful for a fifth grade end-of-grade assessment. So,
based on these studies, it would appear that subscores on
operational tests have more often been found not to be useful
than to be useful.

There is a lack of studies that demonstrated the validity
of inferences made from the subscores. For example, there is
little evidence showing that subscores are related to other ex-
ternal criteria. The only exception is Wallmark (unpublished
data, 1981), who showed that GRE Psychology subscores are
more strongly related to the number of courses taken in rele-
vant subjects rather than in other areas. There is also a lack of
evidence regarding the usefulness of the feedback from sub-
scores in improving the future performance of the examinees.
Haberman (2008b) demonstrated via theoretical derivations
that the incremental validity of subscores is limited when
subscores are either not reliable or are highly correlated with
the total scores. More research is needed on this area.

Demonstration Using a Data Set

To demonstrate the problems with subscores consisting of
only a few items, let us consider data from the aforementioned
form of the Elementary Education: Content Knowledge test.
We ranked the questions on the mathematics and science
subareas separately in the order of difficulty or proportion
correct. We then created a Form A that consists of the ques-
tions ranked 1, 6, 7, 12, 13, 18, 19, 24, 25, 30 in mathematics
and the questions ranked 1, 6, 7, 12, 13, 18, 19, 24, 25, 30 in
science. Thus, Form A has a total of 10 mathematics items
and 10 science items. Note that it is not uncommon to find op-

erationally reported subscores that are based on 10 or fewer
items—see Figure 20 of Goodman and Hambleton (2004) for
an example. Hence the choice of 10 items contributing to
each subscore is quite realistic. Similarly, we created a Form
B with questions ranked 2, 5, 8, 11, 14, 17, 20, 23, 26, 29 in
mathematics and in science, and a Form C with the remain-
ing questions. Forms A, B, and C can be considered roughly
parallel forms and, by construction, all of the several thou-
sand examinees who took the total test took all three of these
forms. The subscore reliabilities on Forms A, B, and C range
between .46 and .60. The subscore means on Form A, B, and
C are 6.5 for mathematics and 5.7 for science.

We found that 6,035 examinees scored 4 (1st quartile) or
lower on science on Form A. Such examinees will most likely
be thought to be weak in science and provided additional
instructions in science. Is this justified? We examined the
science subscores of these 6,035 examinees on Forms B and
C. Of them, 34% scored higher than the first quartile on science
on Form B and 49% scored higher than the first quartile on
science on Form C. We also found that of those who scored
less than 5 (first quartile) or lower on mathematics on Form
A, 30% scored higher than the first quartile on mathematics
on Form B and 35% scored higher than the first quartile on
mathematics on Form C.

We then identified all the 384 examinees who obtained a
subscore of 8 on mathematics (third quartile) and 4 on sci-
ence (first quartile) on Form A. Such examinees will most
likely be thought to be strong in mathematics and weak in
science and given additional instructions in science. We ex-
amined the mathematics and science subscores of these 384
examinees on Forms B and C. Table 1 shows a cross-tabulation
of the subscores on Form B of these examinees. The table
shows that researchers could often reach different conclu-
sions based on the subscores on Form A and Form B. The
percentage of examinees whose mathematics score is higher
than their science score is only 68 on both Forms B and C.
Also, of the 373 examinees who scored 5 (first quartile) on
mathematics and 7 (third quartile) on science on form A, the
percentage of examinees whose science score is higher than
their mathematics score is 49 and 50, respectively, on Forms
B and C.

This simple example demonstrates that remedial and in-
structional decisions based on subscores based on few items
will have a high chance to be incorrect.

Reliability is defined as the correlation between the scores
on a test and those on a parallel test and hence it is also
possible to demonstrate the lack of usefulness of the 10-item
subscores by computing simple correlations. The correlation
of the science subscore on Form A (10 items) and the science
subscore on Form B (10 items) is .42 while the correlation
of the science subscore on Form A (10 items) and the total
score on Form B (20 items) is .50—thus the total score on
Form B is a much better predictor than the science subscore
on Form B of the science subscore on the parallel Form A.

Alternatives to Simple Subscores
Researchers suggested several alternatives to simple sub-
scores. These alternatives are briefly described next.

Augmented Subscores and Weighted Averages

Wainer et al. (2000) suggested an approach to increase the
precision of a subscore by borrowing information from other
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Table 1. Cross-Tabulations on Form B of the 384 Examinees with Mathematics Subscore of 8
and Science Subscore of 4 on Form A

Science Subscore

Math Subscore 1 2 3 4 5 6 7 8 9 10 Total

3 0 1 2 0 3 4 3 0 0 0 13
4 1 1 1 6 7 3 0 1 0 0 20
5 0 1 4 8 13 13 3 1 1 0 44
6 0 2 6 6 10 15 6 5 0 1 51
7 0 4 2 12 17 17 16 2 3 0 73
8 0 1 5 12 17 25 11 10 3 0 84
9 0 2 4 6 17 14 13 6 1 0 63
10 0 0 2 3 6 10 7 4 4 0 36
Total 1 12 26 53 90 101 59 29 12 1 384

subscores. Because subscores are almost always found to cor-
relate moderately or highly with each other, it is reasonable to
assume that, for example, the science subscore of a student
provides some information about the math subscore of the
same student. In this approach, an examinee’s “augmented”
subscore on a particular subscale (e.g., math) would be a
function of that examinee’s score on that subscale and that
examinee’s score on the remaining subscales (e.g., science,
reading, etc). The subscales that have the strongest corre-
lation with the math subscale have larger weights and have
more influence on the “augmented” math subscore. Haber-
man (2008a) suggested the use a “weighted average” of the
subscore and the total score to estimate the true subscore.
This weighted average is a special case of the augmented
subscore (Wainer et al., 2000). Based on notation introduced
earlier, the weighted average can be denoted as

ss x = s̄ + a(s − s̄ ) + b(x − x̄),

where a and b are constants that depend on the reliabilities
and standard deviations of the subscore and the total score
and the correlations between the subscores. For example,
for the aforementioned form of the Elementary Education:
Content Knowledge test, the values of a and b are .62 and .11,
respectively. Hence, the weighted average corresponding to
Mary D. Poppins’s mathematics subscore, which is an estimate
of her true mathematics subscore based on her observed
mathematics subscore and her observed total score, is

19.4 + 0.62(12 − 19.4) + 0.11(75 − 78.4) = 14.42,

which is in between the estimate based on her observed sub-
score and the estimate based on her observed total score. The
solid squares in Figure 2 show the weighted averages of the
same nine examinees considered earlier for the Elementary
Education: Content Knowledge test. Note that whenever an
examinee obtained a subscore that is lower/higher compared
to his/her total score, the corresponding weighted average
differs considerably from the subscore (e.g., the mathematics
subscore of those with total scores 75 and 91 and the social
studies subscore of those with total score 44, 68, and 91).1

Haberman (2008a) and Haberman et al. (2009) discussed
the computation of the PRMSE of augmented subscores and
weighted averages. If the PRMSE of an augmented subscore
or a weighted average is substantially larger than both the
PRMSEs and PRMSEx of the corresponding subscore, then
the augmented subscore or the weighted average can be re-
ported. Whether an improvement in reliability (i.e., higher
PRMSEs) for augmented subscores and weighted averages is

large enough to justify reporting them instead of raw sub-
scores depends on the purpose of the subscores. If the sub-
scores are used for high stakes decisions such as licensing,
then even a small gain in reliability (e.g., .01) may trigger the
need to report augmented subscores or weighted averages
instead of raw subscores. But in other cases (e.g., using sub-
scores for identifying individual strengths and weaknesses
on subscores), a larger gain in reliability may be required.
For the aforementioned form of the Elementary Education:
Content Knowledge test, the values of the PRMSE for the
weighted averages are .80, .87, .79, and .83, respectively and
the values of the PRMSE for the augmented subscores are .80,
.87, .80, and .83, respectively. The PRMSE for any augmented
subscore or weighted average is substantially larger than the
corresponding PRMSEs and PRMSEx (see an earlier section
for values of PRMSEs and PRMSEx for these data). Therefore,
the augmented subscores or the weighted averages can be
reported for the test.

It has been shown (e.g., Wainer et al., 2000, 2001; Puhan
et al., 2010; Sinharay, 2010; Skorupski and Carvajal, 2010)
that augmented subscores and weighted averages often are
substantially more reliable than simple subscores and of-
ten have added value over simple subscores and the total
score. Sinharay found that there is hardly any difference be-
tween the augmented subscore and the weighted average.
Researchers such as Stone et al. (2010) and Skorupski and
Carvajal claimed that there are problems with the validity of
augmented subscores, but Sinharay, Haberman, and Wainer
(2011) argued that no such problems existed.

Objective Performance Index

The objective performance index (Yen, 1987) is another ap-
proach to enhancing a subscore by borrowing information
from other parts of the test. This approach uses a combination
of IRT and Bayesian methodology. To compute the objective
performance index, one first applies a unidimensional IRT
model to compute an estimate of the subscore of each exam-
inee, which is expressed as a percent-correct score, based on
the examinee’s overall test performance. A χ 2-type statistic
is used to determine if the estimated subscore differs signif-
icantly from the observed subscore, which is also expressed
as a percent-correct score. If the estimated subscore does
not differ significantly from the observed subscore, then the
objective performance index is defined as a weighted aver-
age of the observed subscore and the estimated subscore. If,
however, the estimated subscore differs significantly from the
observed subscore, then the objective performance index is
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defined as the observed subscore. See Figure 19 of Goodman
and Hambleton (2004) for an example of an operational score
report that includes the objective performance indices of an
examinee. It should be noted that this approach, because
of the use of a unidimensional IRT model, may not provide
accurate results when the data are truly multidimensional.
Ironically, that is when subscores can be expected to have
added value.

Estimates Skill Parameters from a Cognitive Diagnostic
Model

It is possible to employ a psychometric model such as a cog-
nitive diagnostic model (e.g., Fu & Li, 2007) or a diagnostic
classification model (Rupp & Templin, 2008) to report diag-
nostic scores instead of reporting subscores. See, for exam-
ple, DiBello, Roussos, and Stout (2007), Leighton and Gierl
(2007), Rupp, Templin, and Henson (2010), and von Davier,
DiBello, and Yamamoto (2008) for further details on these
models. These models assume that (a) solving each test item
requires one or more skills, (b) each examinee has a discrete
latent skill parameter corresponding to each of the skills,
and (c) the probability that an examinee will answer an item
correctly is a mathematical function of the skills the item re-
quires and the latent skill parameters of the examinee. After a
diagnostic classification model is fitted to a data set, the esti-
mated values of the skill parameters are the diagnostic scores
that can be reported. Examples of such models are the rule
space model (RSM; Tatsuoka, 1983), the attribute hierarchy
method (AHM; Leighton, Gierl, & Hunka, 2004), the DINA
and NIDA models (Junker & Sijtsma, 2001), the general di-
agnostic model (von Davier, 2008), and the reparameterized
unified model (Roussos et al., 2007). The first two of these, the
RSM and AHM, are slightly different from the other diagnostic
classification models in nature because they do not estimate
any skill parameters—they match the response pattern of
each examinee to several ideal or expected response pat-
terns to determine what skills the examinee possesses. While
there has been substantial research on diagnostic classifica-
tion models, as Rupp and Templin (2009) acknowledge, there
has not been a very convincing case that unequivocally illus-
trates how the added parametric complexity of these models,
compared to simpler measurement models, can be justified in
practice. In addition, there have been few empirical illustra-
tions that the diagnostic scores produced by these models are
reliable and valid (see, e.g., Haberman & von Davier, 2007;
Sinharay & Haberman, 2008b).

Estimates from a MIRT Model

Researchers, such as Luecht (2003), de la Torre and Patz
(2005), and Haberman and Sinharay (2010) examined the
reporting of estimated ability parameters using MIRT models
(e.g., Reckase, 1997; Ackerman et al., 2003). Haberman and
Sinharay suggested reporting of estimated true subscores,
that are in the same scale as the number-correct subscores,
using MIRT models. de la Torre and Patz and Haberman
and Sinharay found that there is not much difference be-
tween MIRT-based diagnostic scores and augmented sub-
scores (Wainer et al., 2001). Haberman and Sinharay also
suggested a method to determine if subscores based on MIRT
models are of added value.

Notes on Using a Psychometric Model to Report Diagnostic
Scores

If a psychometric model is employed to report diagnostic
scores rather than simply reporting subscores, we think that
the burden of proof lies on the person applying the model
to demonstrate that the model parameters can be reliably
estimated, that the model approximates the observed pattern
of responses better than a simpler model (e.g., a univariate
IRT model), that the computations required to fit the model
are not excessively time-consuming, and that the diagnostic
scores reported by the model have added value over a simple
subscore or over the score(s) reported by a simple model. The
simplest of the models passing fulfilling the demands may be
operationally used for diagnostic score reporting.

Comparison of Different Approaches

Researchers have also compared subscores and their alterna-
tives in terms of accuracy in estimating the true subscores. For
example, Dwyer, Boughton, Yao, Steffen, and Lewis (2006)
compared raw subscores with three alternatives—objective
performance index, augmented subscores, and MIRT-based
subscores. They found that the MIRT-based and augmenta-
tion methods performed best overall in estimating the true
subscore. Fu and Qu (2010) also found the MIRT-based and
augmentation methods to be the best among several methods
of reporting subscores they studied.

Recommendations
This module discussed different issues involving subscores.
The following list provides our recommendations for those
interested in reporting subscores:

• If you are building a test for which subscores are to be re-
ported, use a technique such as evidence-centered design
(e.g., Mislevy, Steinberg, & Almond, 2003) or assessment
engineering practices for item and test design (e.g., Luecht,
Gierl, Tan, & Huff, 2006) to ensure that the test would al-
low you to report subscores. Test developers will have an
important role in this. For example, Wainer et al. (2000)
found that the data from a test were unidimensional and
commented that “This has an important message for test
developers, specifically, that if they want to measure multi-
ple orthogonal dimensions they need to profoundly modify
their item-writing and test-construction techniques.”

• Whenever subscores are provided, provide evidence of ade-
quate reliability, validity, and distinctness of the subscores.
Any reported subscore, in order to be reliable, should be
based on a sufficient number of items. Combining some
subscores may result in subscores that have higher relia-
bility and hence added value (although it might make the
definition of the subscore broader). For example, subscores
for “Physics: theory” and “Physics: applications” may be com-
bined to yield one subscore for “Physics.” It is important in
the planning stage to ensure that the skills of interest are
as distinct as possible from each other (though this is quite
a difficult task before seeing the data).

• Consider reporting weighted averages or augmented sub-
scores that often have added value (e.g., Sinharay, 2010)
and often provide more accurate diagnostic information
than the subscores do. Weighted averages may be difficult
to explain to the general public, who may not like the idea
that, for example, a reported reading subscore is based not
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only on the observed reading subscore, but also on the ob-
served writing subscore. Several approaches to the issue
of explaining such weighted averages can be considered.
One is that the weighted average better estimates exami-
nee proficiency in the content domain represented by the
subscore than does the subscore itself. This result can be
discussed in terms of prediction of performance on an al-
ternative test. The issue can also be discussed in terms of
common cases in which information is customarily com-
bined. For example, premiums for automobile insurance
reflect not just the driving experience of the policy holder
but also related information (such as education and marital
status) that predicts future driving performance. In most
cases, this difficulty in explanation of the weighted aver-
ages is more than compensated for by the higher PRMSE
(i.e., more precision) of the weighted average.

• This module has primarily centered on subscores for indi-
vidual examinees. Subscores can be reported at an aggre-
gate level as well. For example, several testing programs
report average subscores for the institutions that the ex-
aminees belong to. See Sinharay, Puhan, and Haberman
(2010) for an example of such a score report. From our ex-
perience, there seems to be a common misconception that
if one computes an average (over examinees) of subscores
that are based on only a few items, the errors will cancel
out and the average subscore will be worth reporting. How-
ever, Longford (1990) and Haberman, Sinharay, and Puhan
(2009) suggested methods to examine whether aggregate-
level subscores are of added value, and presented examples
of situations when aggregate-level subscores do not have
added value. So, examine the quality of the aggregate-level
subscores before reporting them.

• Report subscores on an established scale. A temptation may
exist to make this scale comparable to the scale for the total
score or equal to a fraction of the scale that corresponds to
the relative importance of the subscore, but these choices
are not without difficulties given that subscores and total
scores typically differ in reliability. In addition, equate the
reported subscores so that the definition of strong perfor-
mance in a subject area does not change across different
administrations of a test. In typical cases, equating is feasi-
ble for the total score but not for subscores (e.g., if an anchor
test is used to equate the total test, only a few of the items
will correspond to a particular subarea so that an anchor
test equating of the corresponding subscore is not feasible).
Some work on equating of subscores and weighted averages
has been done by Puhan and Liang (2011) and Sinharay and
Haberman (2011).

• It is possible to perform an analysis of residuals to find the
examinees who scored much lower or higher in one subarea
compared to the other subareas. For example, Haberman
(2008a) considered a residual that is the difference be-
tween the true subscore and the linear regression of the
true subscore on the true total score. However, as Haber-
man found, the reliability of residuals for existing edu-
cational tests is expected to be low. Therefore, it is not
straightforward to find residuals that are trustworthy.

• Finally, remember the advice of Luecht et al. (2006) that
“inherently unidimensional item and test information can-
not be decomposed to produce useful multidimensional
score profiles—no matter how well intentioned or which
psychometric model is used to extract the information” and
that we should not “try to extract something that is not
there” (p. 6). Thus, for some tests, changing the structure,

by using, for example, sound assessment engineering prac-
tices for item and test design (Luecht et al., 2006) may be
the only option in order to be able to report subscores, or,
more generally, any kind of diagnostic scores. If restruc-
turing the test is not a reasonable option, then, instead of
subscore reporting, one can consider alternatives such as
scale anchoring (e.g., Beaton & Allen, 1992), which makes
claims about what students at different score points know
and can do, and item mapping (e.g., Zwick, Senturk, Wang,
& Loomis, 2001), that involves the use of exemplar items to
characterize particular score points.

Self-Test2

1. Proportional Reduction of Mean Squared Errors: Theory

Let us denote the observed total score and the true total
score of an examinee by x and xt, respectively. Let us denote
the observed subscore and the true subscore of the examinee
by s and st.. Any reported subscore for the examinee can be
viewed as an estimate of the true subscore. Let us denote any
such estimate by e. The mean squared error of e is given by
E (e − st )2 . A baseline estimate is the trivial estimate E(s).

(a) Prove that if e is restricted to a constant, the mean square
is minimized when the constant is equal to E(s).
The proportional reduction of mean squared error
(PRMSE) due to the use of e instead of the use of E(s)
is given by

E (E (s ) − st )2 − E (e − s t )2

E (E (s ) − st )2
.

Now let us consider two estimates of the true subscore:

• ss, the regression of the true subscore st on the observed
subscore s.

• sx, the regression of the true subscore st on the total
score x.

(b) Derive a simple form for ss.
(c) Prove that the PRMSE of ss is identical to the reliability of

the subscore.
(d) Compute the PRMSE of sx.

If the subscore has added value over the total score, then ss
should perform better than sx in predicting st. In other words,
the MSE for ss should be smaller than sx, or, the PRMSE of ss
should be larger than sx.

2. Proportional Reduction of Mean Squared Errors:
Application

Consider the two subscores considered in Ackerman and Shu
(2009) for a fifth grade end-of-grade assessment. The relia-
bilities of the subscores (one measuring ability to understand
the meaning of words and phrases, with 55 items, and the
other measuring comprehension with 18 items) are .85 and
.59, respectively. The standard deviation of the subscores are
6.65 and 2.05, respectively, the correlation between the sub-
scores is .65 and the total test reliability is .87. Compute the
PRMSE for sx and comment if the subscores have added value
for the data set.
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3. Equating Subscores: Additional Issues

A testing practitioner is thinking of ways to equate (a) raw
subscores across parallel forms of the same test, and (b)
augmented subscores across parallel forms of the test. A col-
league suggested the use of the equated total scores (which
are comparable across the new and old forms) as an anchor
score to equate the subscores. Which of the two equating
procedures (i.e., equating raw subscores or augmented sub-
scores) will benefit more from using the total equated score
as an anchor score?

4. True/False Questions

(a) Subscores are most likely to have added value if they have
relatively high reliability and if the true subscore and true
total score have only a moderate correlation.

(b) A unidimensional test cannot provide useful multidimen-
sional score profiles, no matter which psychometric model
is used.

(c) I have a test for which the subscores are neither reliable
nor distinct—so I understand that the subscores should
not be reported for individual examinees. However, I can
report the averages of these subscores for universities that
the examinees belong to because when I average, the errors
would cancel out.

(d) I have a test in which the subscores are based on a few
items and do not have added value. However, many people
who use these subscores say that they help examinees find
their weaknesses—so I believe that the subscores should
be reported.

(e) The correlation coefficient between two subscores is .45—
so they must be distinct.

(f) Equating subscores guarantees their usefulness for diag-
nostic purposes.

Answers
1.
(a) Suppose e is a constant

E (e − st )2 = E [e − E (s ) + E (s ) − st ]2

= E [e − E (s )]2 + E [E (s ) − st ]2

+2E {[e − E (s )][E (s ) − st ]}
= E [e − E (s )]2 + E [E (s ) − st ]2

+2[e − E (s )]E [E (s ) − st ]

because eis a constant

= E [e − E (s )]2 + E [E (s ) − st ]2

+2[e − E (s )][E (s ) − E (st )]

= E [e − E (s )]2 + E [E (s ) − st ]2

+2[e − E (s )][E (s ) − E (s )]

= E [e − E (s )]2 + E [E (s ) − st ]2

≥ E [E (s ) − st ]2,

where equality holds if and only if e = E (s ).

(b) The linear regression of v on u is given by

E (v|u) = E (v) + ρ(u, v)
√

Var(v)√
Var(u)

[u − E (u)], where

ρ(u, v) denotes correlation between u and v. Therefore, ss,

the linear regression of st on s is given by ss = E (st ) +
ρ(st , s )

√
Var(st )√
Var(s )

[s − E (s )] = E (s )+rs [s − E (s )], where

rs is the reliability of the subscore, because E (st ) = E (s )

and ρ(st , s ) =
√

Var(st )√
Var(s )

= √
rs .

(c) The PRMSE of ss is given by

E (E (s ) − st )2 − E (ss − s t )2

E (E (s ) − st )2

= Var(st ) − E {E (st |s ) − s t}2

Var(st )

= Var(st ) − Var(st |s )
Var(st )

= Var(st ) − Var(st )[1 − ρ2(st , s )]
Var(st )

= ρ2(st , s ) = rs .

(d) The PRMSE of sx is given by

E (E (s ) − st )2 − E (sx − s t )2

E (E (s ) − st )2

= Var(st ) − E {E (st |x) − s t}2

Var(st )

= Var(st ) − Var(st |x)
Var(st )

= Var(st ) − Var(st )[1 − ρ2(st , x)]
Var(st )

= ρ2(st , x) = [Cov(st , x)]2

Var(st )Var(x)

= [Cov(st , xt )]2

Var(st )Var(x)

= [Cov(st , xt )]2

Var(st )Var(xt )
Var(xt )
Var(x)

= ρ2(st , xt )ρ2(xt , x).

If the subscore has added value over the total score, then rs
should be larger than ρ2(st , xt )ρ2(xt , x). See, for example,
Sinharay and Haberman (2008a), for details on the computa-
tion of ρ2(st , xt ).

2.
Var(x) = Sum of the variances of the
subscores+2×correlation between the subscores ×
product of the standard deviations of the subscores = 66.15.

Var(xt) = Var(x)×Total score reliability = 57.55.
Variance between the true subscores =(

6.652 × 0.85 0.65 × 6.65 × 2.05

0.65 × 6.65 × 2.05 2.052 × 0.59

)
=

(
37.59 8.86

8.86 2.48

)
,

because (a) the covariance between two different true sub-
scores is the same as the covariance between the correspond-
ing observed subscores and (b) the variance of a true sub-
score is the variance of the corresponding observed subscore
multiplied the reliability of the subscore.
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Cov(st , xt ) for subscores = the sum of the corresponding
row of the above variance matrix, and are equal to 46.45 and
11.34 for the two subscores.

ρ2(xt , x) = Total score reliability = .87.

ρ2(st , xt ) = [Cov(st , xt )]2

Var(st )Var(xt )

= (46.45)2

37.59 × 57.55
and

(11.34)2

2.48 × 57.55
for the two subscores

= .997 and .901 for the two subscores.

So, PRMSE for sx = ρ2(st , xt )ρ2(xt , x) = .87 and .78 for the
two subscores.

Because both of these values are larger than the corre-
sponding reliability values, the subscores do not have added
value for this data set.3

3.
The equating of augmented subscores will benefit more than
equating of raw subscores if total equated scores were used
as an anchor. Augmented subscores borrow information from
either the total score or other subscores. Therefore, compared
to the raw subscores, augmented subscores will correlate
more with the total score, which will lead to a more precise
equating in terms of reduced random equating error.

4.
True/False questions

(a) True. Both conditions are important to have added value.
(b) True. A psychometric model cannot extract something that

is not there (See Luecht et al., 2006).
(c) False. One has to analyze the average subscores for the

universities to examine if they have any added value over
average total scores (as in Haberman et al., 2009; Longford,
1990).

(d) False. Unreliable subscores may produce accurate reme-
dial information for some examinees, but they will provide
incorrect remedial information for many other examinees.

(e) False. It may be the case that these subscores have ex-
tremely low reliability and hence very high disattenuated
correlation.

(f) False. The subscores have to be reliable and distinct from
one another before equating can provide any added diag-
nostic benefits.
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Notes
1Note that the mathematics subscore mean is much larger than the
other subscore means—so the mathematics subscore is expected to be
much larger than the other subscores for all examinees. The weighted
average for the mathematics subscore will differ from the subscore
itself only if the latter is much lower/higher (compared to the other
subscores) than the mathematics subscore mean.

2The first two questions of the self-test are intended for the readers who
are comfortable with mathematical derivations.
3Note that this is true even though as many as 55 items contribute to
the first subscore.
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