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Traditional methods for examining differential item functioning (DIF) in polytomously scored test
items yield a single item-level index of DIF and thus provide no information concerning which score
levels are implicated in the DIF effect. To address this limitation of DIF methodology, the framework
of differential step functioning (DSF) has recently been proposed, whereby measurement invariance
is examined within each step underlying the polytomous response variable. The examination of
DSF can provide valuable information concerning the nature of the DIF effect (i.e., is the DIF an
item-level effect or an effect isolated to specific score levels), the location of the DIF effect (i.e.,
precisely which score levels are manifesting the DIF effect), and the potential causes of a DIF effect
(i.e., what properties of the item stem or task are potentially biasing). This article presents a
didactic overview of the DSF framework and provides specific guidance and recommendations on
how DSF can be used to enhance the examination of DIF in polytomous items. An example with real
testing data is presented to illustrate the comprehensive information provided by a DSF analysis.
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Let us consider a test being developed to assess proficiency
in a particular content domain for individuals having

a range of racial, ethnic, economic, and social backgrounds.
At some point in the process of developing the test and val-
idating the obtained scores, the question of fairness must
be addressed. The test developer must provide a justifiable
argument that the decisions and interpretations made as a
result of the test scores lead to outcomes that are fair and eq-
uitable across examinees of varying racial, ethnic, economic,
and social backgrounds. In the technical measurement
literature (American Educational Research Association
[AERA], American Psychological Association [APA], & Na-
tional Council on Measurement in Education [NCME],
1999), fairness has been defined according to four proper-
ties: a fair test is one for which (a) the items are free of bias,
(b) all examinees are provided equal opportunity to demon-
strate their level of proficiency in the intended construct,
(c) all examinees have had an equal opportunity to learn
the content being assessed (with the exception of employ-
ment, credentialing, and admissions testing), and (d) the
distributions of test scores are as equal as possible across
different groups of examinees. Of the four properties of fair-
ness, that of item bias has garnered the greatest attention in
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the technical measurement literature (Camilli, 2006). Con-
temporary methods for studying item bias are based, in part,
on the framework of differential item functioning (DIF). An
item contains DIF if individuals having the same level of
proficiency, but belonging to different groups, have a differ-
ent expected response to the item (Holland & Thayer, 1988;
Penfield & Camilli, 2007; Roussos & Stout, 2004). The pres-
ence of DIF, along with content-based evidence concerning
the causes of the DIF, provides evidence that the item may
be biased (Camilli, 2006).

Incipient procedures for assessing DIF focused on dichoto-
mous items (Camilli & Shepard, 1994; Holland & Wainer,
1993; Penfield & Camilli, 2007; Roussos & Stout, 2004). How-
ever, the increasing use of polytomous item formats (e.g.,
performances that can be scored according to the degrees of
proficiency, rather than as simply correct or incorrect) has
led to the development of numerous methods for assessing
DIF in polytomous items (Penfield & Camilli, 2007; Penfield
& Lam, 2000; Potenza & Dorans, 1995). Tests of DIF in poly-
tomous items address whether individuals having the same
level of proficiency, but belonging to different groups, have
the same chance of obtaining each score level of the polyto-
mous response variable. A limitation of traditional measures
of DIF for polytomous items is that they provide only an
item-level index of the DIF effect (or an item-level test of
the null hypothesis of no DIF) and thus provide no informa-
tion concerning which score levels are implicated in the DIF
effect or whether some score levels are implicated more than
others. For this reason, traditional DIF measures for polyto-
mous items can be conceptualized as omnibus measures of
DIF. Because omnibus measures of DIF provide no informa-
tion concerning which score levels are manifesting the DIF
effect, they provide limited information to help guide the
identification of specific components of the item manifesting
the DIF effect and the potential causes of the DIF effect.

The limitations of omnibus DIF measures make clear the
need for a DIF methodology that examines measurement
equivalence in relation to each score level of the polytomous
item. The probability of observing each score level of a poly-
tomous item is defined according to a series of step functions
describing the chance that an individual will progress, or
step, from one score level to a higher score level (e.g., the step
from a score of 1 to a score exceeding 1, the step from a score
of 2 to a score exceeding 2, etc.). It is the properties (i.e., un-
derlying parameters) of these step functions that ultimately
dictate the probability of observing each score level for an
individual with a particular level of ability (Baker, 1992). As
a result, an examination of the between-group difference in
measurement properties in relation to each score level can
be pursued through an examination of the between-group
difference in the properties of the step functions underlying
the polytomous item. This framework has been referred to
as differential step functioning (DSF; Penfield, 2006, 2007).
The framework of DSF provides a mechanism for examining
the between-group difference in measurement properties
at each step, thus providing detailed information concern-
ing where along the polytomous response process a lack of
measurement equivalence may exist for the groups under
consideration.

The framework of DSF provides DIF analysts with sev-
eral advantages over the omnibus measures of DIF. First,
tests of measurement invariance based on the DSF effects
can be more powerful than the omnibus DIF tests when the

magnitude and/or sign of the DSF effect varies across the
steps of the underlying polytomous response variable (Pen-
field, 2006, 2007). In the extreme case where the sign of
the DSF effect changes across the steps (i.e., is positive for
one step but negative for another), the power of DSF-based
tests of invariance has been shown to be more than 10 times
that of the omnibus tests of DIF (i.e., a power of .045 for
the omnibus test of DIF compared with a power of .85 for
the test of DSF; Penfield, 2006). A second advantage of the
DSF framework is that it allows the DIF analyst to pinpoint
precisely which score levels (or steps) are responsible for an
observed DIF effect. That is, if a polytomous item is flagged
for DIF, then the analysis of DSF can be used to isolate the
components of the item that require further content review
and possible revision and ultimately suggest the factors caus-
ing the DIF. Because the identification of the causes of DIF
is the key to decisions about item revision and/or removal
(Bolt, 2000; Douglas, Roussos, & Stout, 1996; Gierl & Khaliq,
2001; Oshima, Raju, Flowers, & Slinde, 1998; Scheuneman,
1987; Schmitt, Holland, & Dorans, 1993; Swanson, Clauser,
Case, Nungester, & Featherman, 2002), the framework of
DSF can play a pivotal role in such decisions. In addition,
the growing interest in the consideration of cognitive strate-
gies used in responding to items (DiBello, Roussos, & Stout,
2007; Leighton & Gierl, 2007; Mislevy, 2006) places a new
emphasis on understanding between-group differences in
measurement properties in relation to these strategies. DSF
provides a mechanism for identifying between-group differ-
ences in strategies underlying the responses to polytomous
items.

To date, the only accounts of DSF and related methodology
have been technical and have provided limited guidance on
the use and interpretation of DSF results. In this article, we
present a nontechnical overview of the DSF framework and
available methodology for assessing DSF and provide recom-
mendations for the use and interpretation of DSF analyses.
Issues of particular importance include: (a) how the re-
sults of a DSF analysis can help target investigations into
the causes of DIF, (b) what methods can be used to evalu-
ate DSF, (c) what criteria should be used to flag large DSF
magnitudes, and (d) how DSF analyses can be most effec-
tively used in conjunction with traditional DIF analyses. In
addition, we illustrate the use of DSF using a real data set.

What Is DSF?
Let us begin the description of DSF by considering a polyto-
mously scored item having four score levels with outcomes
denoted by Y. In this example, the score levels will be as-
signed the values of 0, 1, 2, and 3. Polytomous item response
theory (IRT) models can be used to specify the probability
that an examinee with a particular level of ability will ob-
tain each of the possible score levels (0, 1, 2, and 3, in this
case) for the item in question. These IRT models, however,
are simply a reformulation of a series of relatively simple
models, called step functions, which describe the probability
that an examinee with a particular level of ability steps (or
advances) from one score level to a higher level. For a poly-
tomous item having r score levels, there will be J = r − 1
step functions. Thus, in our example of a polytomous item
having four response options (r = 4), there are three under-
lying step functions (J = 3).
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There are several different forms of step functions, and
the different forms correspond to distinguishing and defin-
ing characteristics of polytomous IRT models. For example,
the graded response model (GRM; Samejima, 1969, 1972,
1997) uses the cumulative form, and the partial credit fam-
ily of models (Masters, 1982; Muraki, 1992, 1997) uses the
adjacent-categories form. The distinguishing properties of
different forms of step functions are described in numerous
sources (Agresti, 1990; French & Miller, 1996; Penfield &
Camilli, 2007). In this article, we focus on the cumulative
step function form, whereby the jth step function describes
the probability that an examinee successfully advances to a
score equal to or greater than j (it is the “equal to or greater
than” aspect to which the cumulative label is attributable).
In our example of a four-category polytomous item, the cumu-
lative form would lead to the following step functions: (a) the
first step function describes the probability that an examinee
advances from a score of 0 to a score of at least 1, that is, the
probability that Y ≥ 1; (b) the second step function describes
the probability that an examinee advances from a score of 1
or lower to a score of at least 2, that is, the probability that Y
≥ 2; and (c) the third step function describes the probability
that an examinee advances from a score of 2 or lower to a
score of 3, that is, the probability that Y = 3.

Each of the J step functions is defined using a two-
parameter logistic model such that each model contains a
difficulty parameter (bj) that is specific to the step and a dis-
crimination parameter (a) that is constant across all steps.
Recalling that the jth step function specifies the probability
of observing a response greater than or equal to j [i.e., P(Y ≥
j)], as a function of ability (θ), the jth step function has the
form

P (Y ≥ j | θ) = exp[a(θ − b j )]
1 + exp[a(θ − b j )]

. (1)

Note that the parametric form of the jth step function is
equivalent to the two-parameter logistic IRT model (Lord,
1980) commonly applied to dichotomously scored (e.g.,
multiple-choice) items. The parameter a dictates the dis-
criminating power of each step function (i.e., how strongly
each step discriminates between individuals of low vs. high
levels of ability). The parameter bj dictates the difficulty of
the jth step, and the specific value of bj represents the value
of ability required to have a probability of .5 (i.e., a 50%
chance) of successfully advancing at the jth step. Under the
GRM, it is assumed that the values of bj are ordered from
lowest to highest across the successive steps.

An illustration of the three cumulative step functions
underlying a four-category polytomous item is shown in
Figure 1. These step functions have the parameter values
a = 1, b1 = −1.5, b2 = −.5, b3 = 2.0. The first step function
is located furthest to the left, indicating that for any level
of ability the probability of successful advancement at the
first step is always higher than that for the second and third
steps. Similarly, the third step function is located furthest
to the right, indicating that for any level of ability the prob-
ability of successful advancement at the third step is always
lower than that of the first and second steps. It is also rel-
evant to note that the relative spacing between the three
step functions is not identical—although the second step
function is not very far to the right of the first step function,
the third step function lies relatively far to the right of the
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FIGURE 1. Trace lines for the three step functions underly-
ing a hypothetical four-category polytomous item.

second step function. This indicates that the difficulty of a
successful transition at the second step is not substantially
more than the difficulty at the first step, but the difficulty of
a successful transition at the third step is considerably more
than the difficulty at the second step. The only requirement
placed on the relative locations of the step functions is that
each successive step function be located to the right of the
previous step function (i.e., each successive step increases
in difficulty).

The framework of DSF is concerned with the extent to
which the properties of each step function differ between
the reference (R) and focal (F) groups, and thus the extent
to which the parameters b1, b2, . . . , bJ differ between the
groups. Because the a parameter is not specific to the step
(i.e., it is constant across all steps), most of the emphasis
in examining DSF falls on the between-group differences in
the bj parameters (the rationale for this is addressed in a
later section). To describe this more formally, let us denote
the step function difficulty parameters of the two groups
by bjR and bjF , respectively. Then, the identification of DSF
concerns the extent to which bjR = bjF for each step. The
condition of no DSF for the jth step holds if bjR = bjF .

Figure 2 presents a pictorial representation of DSF for
which bjF is .3 units higher than bjR for each of the three
steps of the polytomous item (i.e., bjF = bjR + .3), causing
each of the step functions of the focal group to be shifted
to the right of those of the reference group by .3 units.
As a result, reference and focal group members who share
the same level of ability do not share the same probability
of successfully advancing at each step; the probability of
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FIGURE 2. Trace lines for the three step functions under-
lying a hypothetical four-category polytomous item for the
reference group (solid lines) and focal group (dashed lines).
All steps display a constant DSF effect.
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FIGURE 3. Trace lines for the three step functions under-
lying a hypothetical four-category polytomous item for the
reference group (solid lines) and focal group (dashed lines).
Step 2 displays a large DSF effect, and steps 1 and 2 display
a negligible DSF effect.

advancing is higher for the reference group than for the
focal group. This situation represents a relative advantage
for the reference group at each step. The DSF presented
in Figure 2 is characterized by a magnitude that is equal
across all steps (the DSF effect is .3 for each step), and thus
represents a constant form of the DSF effect.

The constant DSF form depicted in Figure 2 is but one
of the many different DSF forms that are possible. The DSF
effects can vary across the steps. For example, the DSF ef-
fect may be zero for all steps but one, or the DSF effect
can be negative for one step but positive for another step.
Figure 3 displays the situation in which the DSF effect varies
across the three steps of a four-category polytomous item.
In particular, the first and third steps have negligible DSF
effects (for both these steps, bjF = bjR + .1), and the second
step displays a large DSF effect (b3F = b3R + .8). An in-
teresting property of the DSF framework is that the pattern
of DSF effects can provide valuable information concerning
the location and causes of the DIF effect. A description of
particularly revealing patterns of DSF, and how the patterns
can guide investigations into the causes of the DIF effect, is
provided in a subsequent section.

The astute reader who is well versed in DIF methodol-
ogy for dichotomous items will no doubt have noticed the
similarity of DSF to the concept of DIF for dichotomously
scored items. In the case of the dichotomous item, DIF con-
cerns whether individuals having the same level of ability,
but belonging to different groups, have the same probability
of correct response. In contrast, DSF for the jth step con-
cerns whether individuals having the same level of ability,
but belonging to different groups, have the same probability
of successfully advancing at the jth step. As such, each step
can be heuristically conceptualized as a dichotomous item,
and the presence of DSF is examined at each of the J steps
using a framework that is analogous to the one examining
DIF in dichotomous items. It should come as no surprise,
then, that methods used for examining DSF are similar to
those originally developed for use with dichotomous items
(these methods are described in a subsequent section).

Having introduced the concept of DSF, we are now able
to describe the link between DSF and DIF. Because the
properties of the polytomous item as a whole are determined
by the J step functions, we can conceptualize the DIF effect as
the aggregated DSF effect across the J steps. If the condition

of no DSF holds for each step of a polytomous item, then it
must be the case that the condition of no DIF holds for that
item. Similarly, as the DSF effects increase in magnitude,
we expect the DIF effect to increase. Despite the direct
link between DSF and DIF, there are several circumstances
in which many DIF indices are expected to be relatively
insensitive to large DSF effects. One such circumstance is
when a large DSF effect exists in one, and only one, step.
In this case, the large DSF effect will be diluted by the zero
DSF effects of the other steps, yielding a relatively small
aggregated DIF effect. A second circumstance is when two
large DSF effects have opposite signs (one step displays DSF
favoring one group, and a different step displays DSF favoring
the other group), thus yielding a net DIF effect that is near
zero. In these cases, the framework of DSF provides a more
accurate representation of measurement invariance than the
omnibus measures of DIF.

Making Score-Level Interpretations from Step-Level
Results
Upon observing a substantial DSF effect for a particular step,
the DIF analyst is faced with the task of identifying which
specific score levels are responsible for the DSF effect. That
is, step-level DSF effects must be translated into score-level
properties. For example, a large DSF effect for the second
step of a polytomous item containing four score levels indi-
cates that the transition from the lowest two score levels to
the highest two score levels (i.e., assuming a cumulative step
function form) was relatively more difficult for one group.
Because the relative advantage was associated with the tran-
sition to the highest two score levels, the DSF effect alone
does not provide direct information concerning which of the
highest two score levels are responsible for the DSF effect.
It may be that only the third score level is responsible, or it
may be that both the third and fourth levels are responsible.

Although translating the DSF effects into meaningful score
level interpretations is not completely transparent, several
strategies can be used to make informed judgments as to the
score levels containing a potentially biasing factor. First, if a
substantial DSF effect exists in one isolated step, say the jth
step, then it is likely the case that the factor responsible for
the DIF effect resides in the jth score level. This is because
the DSF effect at the jth step indicates that a between-group
difference exists in advancing to any score greater than or
equal to the jth score level, suggesting that the between-
group difference is attributable to a property of the jth score
level. Similarly, if substantial DSF effects exist in several
adjacent steps, say steps j and j + 1, then it is likely that the
factor responsible for the DIF effect resides in score levels j
and j + 1.

Second, if the DSF effects are relatively constant in mag-
nitude across all steps, then there exists evidence that
the factor responsible for the DSF effect is an item-level
property that may be located in the content of the item
stem (e.g., a writing prompt, or the stimulus for a perfor-
mance task) or the general properties of the performance
task itself. Because this effect is expected to impact all
steps, we can conceptualize this as an item-level effect.
The following section describes in more detail how exam-
ination of the pattern of DSF effects can be used to make
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judgments concerning the location of potential causes of the
DIF effect.

Using the Pattern of DSF Effects to Help Identify
the Cause of DIF
As described in the previous sections, the presence of a
DSF effect in a particular step can help the DIF analyst in
targeting the specific score levels manifesting a potentially
biasing factor. We can, however, make even more use of the
DSF effects in understanding the causes of DIF through an
analysis of the pattern of the DSF effects across the J steps
of the polytomous item. In particular, the specific pattern of
the DSF effects across the J steps of the polytomous item can
help guide the analyst in identifying the possible cause(s) of
the DIF effect and in making a decision about item revision
or removal.

Although there are an infinite number of patterns that
the J DSF effects can assume, several general groupings of
patterns are particularly revealing of the causes of the DIF
effect. Penfield, Alvarez, and Lee (2009) described these
groupings within a two-dimensional taxonomy of DSF pat-
terns. The first of these dimensions distinguishes between
pervasive and nonpervasive DSF. Pervasive DSF is observed
when all J steps display a substantial DSF effect, and thus the
DSF effect is pervasive across all score levels. The presence
of pervasive DSF suggests to the analyst that the cause of
DIF is exerting its influence at the item level. For example,
pervasive DSF may be observed in a writing task where stu-
dents are asked to respond to a particular prompt. In such
an item, the presence of pervasive DSF would imply that the
factor responsible for the lack of invariance is inherent in
the content of the prompt itself. In contrast, nonpervasive
DSF exists when only one or a few steps display a substan-
tial DSF effect. The presence of nonpervasive DSF implies
that the factor causing DIF may be isolated to one or a few
steps. For example, consider a writing task in which DSF
appears only in a score level that requires well-structured
paragraphs, in addition to the characteristics required by
the scoring criteria for the lower score levels. In this case,
the nonpervasive DSF provides evidence that the DIF ef-
fect is not necessarily due to content in the writing prompt
but rather is isolated to properties of the particular level
pertaining to paragraph structure. Making this distinction
between pervasive and nonpervasive DSF can prove valuable
in determining whether the cause of DIF is due to an item-
level property or a property of one or more particular score
levels.

The second dimension of the DSF taxonomy pertains to
the consistency of the DSF effects across impacted steps,
distinguishing between constant, convergent, and divergent
forms of DSF. Constant DSF is observed when the steps dis-
playing a DSF effect are relatively equal in magnitude and
sign. Although constant pervasive DSF provides evidence
that the factor responsible for the DSF effect is a property
of the item, constant nonpervasive DSF indicates the fac-
tor responsible for the DSF is restricted to the affected score
levels and thus is not necessarily an item-level property. Con-
vergent DSF describes the situation in which affected steps
display a DSF effect of the same sign (i.e., favoring the same
group) but different magnitude, providing evidence that the
causal factors are manifested differentially across steps. It
may be the case that an item-level effect impacts score levels

differently, or more than one biasing factor is present. Di-
vergent DSF is characterized by affected steps displaying
opposite signs, meaning that the relative advantage shifts
between groups across the steps. The presence of divergent
DSF implies that the causes of the DSF effects are different
for the affected score levels, and thus more than one causal
property is at play. Identifying the presence of divergent DSF
is of paramount importance because many DIF statistics are
expected to be relatively insensitive when divergent DSF ef-
fects cancel one another at the item level, yielding a net DIF
effect near zero.

Statistical Methods for Evaluating DSF
As is the case for the investigation of DIF, several different
statistical approaches can be applied to the investigation of
DSF. To date, three general approaches for evaluating DSF
have been described in the literature: an IRT approach, an
odds ratio approach, and a logistic regression approach. In
general, these approaches follow some of the same method-
ology employed in assessing DIF in dichotomous items, with
the exception that: (a) the polytomous response variable for
the studied item must first be dichotomized to create the
associated J step-level response variables, and (b) a sepa-
rate analysis must be conducted for each of the J steps. As
discussed previously, there are several methods that can be
used to create the J step-level response variables, and we fo-
cus here on the cumulative approach because this has been
the most widely adopted in the literature.

The IRT approach for investigating DSF is based on exam-
ining the between-group differences in the bj parameters of
the jth step function (described by Equation 1) for the stud-
ied item. It follows that the DSF effect for the jth step can be
defined as the between-group difference in the bj parameter,
given by:

�(b j ) = b j F − b j R . (2)

The situation of �(bj) = 0 corresponds to no DSF for
the jth step, the situation of �(bj) > 0 corresponds to a
relative advantage for the reference group on the jth step,
and the situation of �(bj) < 0 corresponds to a relative
advantage for the focal group on the jth step. The example
of DSF presented in Figure 2 corresponds to �(b1) = .3,
�(b2) = .3, and �(b3) = .3. The example of DSF presented
in Figure 3 corresponds to �(b1) = .1, �(b2) = .8, and
�(b3) = .1.

In practice, the values of bj for the reference and focal
groups must be estimated, and thus an estimate of the DSF
effect for the jth step is given by the difference between the
estimated values of bj for the reference and focal groups.
It has been shown that �(bj) is equal to the signed area
between the jth step functions for the two groups (Cohen,
Kim, & Baker, 1993), which is equivalent to Raju’s area mea-
sure of DIF applied to dichotomously scored items (Raju,
1988). As a result, the magnitude of the DSF effect for the
jth step may be interpreted on a similar metric as the DIF
effects defined using Raju’s area measure for dichotomous
items.

Tests of the null hypothesis of no DSF under the IRT ap-
proach can be conducted using two different approaches.
The first approach is to divide �(bj) by its estimated
standard error to form a test statistic that is distributed
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approximately as standard normal. This approach is equiva-
lent to Lord’s (1980) one degree of freedom chi-square statis-
tic used for assessing uniform DIF in dichotomous items, as
applied to each step. The second approach for testing the null
hypothesis that the DSF effect associated with the jth step
equals zero uses a likelihood ratio test (Ankenmann, Witt,
& Dunbar, 1999; Kim & Cohen, 1998; Thissen, Steinberg, &
Wainer, 1993), whereby the likelihood obtained when the
item parameters are constrained to be equal for both groups
(the compact model) is compared with the likelihood ob-
tained when the step parameters are freed to vary between
the two groups (the augmented model). Descriptions of the
likelihood ratio tests for the analysis of DIF using an IRT
approach are numerous (Camilli & Shepard, 1994; Penfield
& Camilli, 2007; Thissen et al., 1993). Although the IRT ap-
proach provides a comprehensive parametric framework for
examining DSF, its appropriate implementation is depen-
dent on having adequately large sample sizes within each
step and data that adequately fit the respective step func-
tion. IRT approaches to examining DSF can be conducted
using a variety of IRT calibration programs, including BILOG-
MG 3 (Zimowski, Muraki, Mislevy, & Bock, 2003), IRTLRDIF
(Thissen, 2001), and MULTILOG 7 (Thissen, Chen, & Bock,
2003).

A second approach for examining DSF is to employ the
odds ratio method described by Penfield (2006, 2007). This
method evaluates the DSF effect of the jth step by comparing
the odds of successfully advancing at the jth step for the
reference and focal group members having the same level
of ability (where ability is typically approximated using an
observed score variable such as the total summated test
score). The between-group equality of the odds of successful
advancement at the jth step can be assessed by considering
the ratio of the odds of success of the reference group over
that of the focal group, yielding what is known as an odds
ratio. The typical value of the odds ratio taken across all
levels of ability is widely referred to as a common odds ratio,
and the natural logarithm of this common odds ratio for
the jth step is denoted by λj (the log-odds ratio possesses a
metric that is symmetric about 0, which is preferable to the
asymmetric odds ratio metric). A value of λj = 0 corresponds
to no DSF at the jth step, a value of λj > 0 corresponds to
DSF favoring the reference group for the jth step, and a value
of λj < 0 corresponds to DSF favoring the focal group for the
jth step. The common log-odds ratio for the jth step can
be estimated using the common log-odds ratio DSF effect
estimator described by Penfield (2006, 2007). The resulting
estimator, λ̂ j , is analogous to the Mantel–Haenszel common
log-odds ratio estimator (Mantel & Haenszel, 1959) widely
used in the assessment of DIF in dichotomous items (Holland
& Thayer, 1988).

The odds ratio approach holds an interesting relationship
to the DSF effect defined under the IRT approach. Assuming
that the IRT step function defined in Equation 1 fits the
data for the jth step, and that the observed test score is
an adequate approximation for ability, then the following
approximate relationship holds:

λ j ≈ a[�(b j )], (3)

where the symbol≈denotes an approximate equivalence due
to the difference in the ability variable used for the IRT and
odds ratio approaches. That is, the common log-odds ratio is
approximately proportional to the between-group difference

in the bj values for the jth step, where the proportionality
is determined by the item-level discrimination parameter,
a. Details concerning the derivation of this relationship are
discussed in Penfield (2007), and the relationship is well
documented for the odds ratio and IRT approaches to mod-
eling DIF effects in dichotomous items (Penfield & Camilli,
2007). The point to take from this is that, whether the DSF
effect for the jth step is modeled under the IRT or odds ratio
approaches, both approaches are estimating a similar effect.

The null hypothesis of no DSF at the jth step using the
odds ratio approach can be tested using the following test
statistic:

z(λ̂ j ) = λ̂ j

S E (λ̂ j )
. (4)

The test statistic shown in Equation 4 is distributed ap-
proximately as standard normal (Hauck, 1979).

Conducting a DSF analysis using the odds ratio approach
can be accomplished using several software programs. Ver-
sion 4.0 of the program DIFAS (Penfield, 2005) can com-
pute λ̂ j and report the results of z(λ̂ j ) for tests of the
null hypothesis of no DSF. Alternatively, the analyst can use
widely available statistical software packages (e.g., SPSS,
SAS, Stata, R) to compute λ̂ j and z(λ̂ j ) by: (a) creating a
set of J dichotomously coded variables that coincide with the
J cumulative step functions, and (b) computing λ̂ j for each
step by obtaining the Mantel–Haenszel common log-odds ra-
tio estimator for each of the J dichotomously coded variables
using the summated test score (or some other appropriate
measure of ability) as the stratifying variable. The advantage
of using DIFAS over general statistical software packages to
conduct DSF analyses is that DIFAS automatically creates
the dichotomously coded step-level variables within the DSF
analysis, thus obviating the analyst’s need to conduct the
dichotomizations prior to running the DSF analyses.

A third approach for investigating DSF is that of logistic
regression, first introduced in the context of DIF detection in
polytomous items by French and Miller (1996). The logistic
regression approach for examining DSF is based on a step
function model that posits the probability of successfully
advancing at the jth step as a function of an observed test
score variable (X) and group membership (G) using the
following logistic equation:

P (Y ≥ j | X ) = exp(β j 0 + β j 1 X + β j 2G )
1 + exp(β j 0 + β j 1 X + β j 2G )

. (5)

The grouping variable, G, is typically a dummy coded vari-
able (i.e., G = 1 for the reference group, and G = 0 for the
focal group), and the coefficient β j 2 corresponds to the DSF
effect at the jth step. The condition of β j 2 = 0 corresponds
to no DSF at the jth step, the condition of β j 2 > 0 re-
flects DSF favoring the reference group, and the condition of
β j 2 < 0 reflects DSF favoring the focal group. Although it
is possible to augment the logistic regression equation with
an interaction term (the interaction of X and G) that corre-
sponds to the nonuniform DSF effect (French & Miller, 1996;
Swaminathan & Rogers, 1990), we restrict our discussion
here to uniform DSF effects. A discussion of nonuniform
DSF effects is presented in a later section.

A useful relationship exists between the DSF effects de-
fined under the logistic regression and odds ratio approaches.
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If the logistic regression model for the jth step function shown
in Equation 5 is used to compute the log-odds ratio at a par-
ticular level of X, then the resulting log-odds ratio reduces to
β j 2, the DSF effect parameter for the jth step. This suggests
that there is an equivalence of the estimated value of β j 2 and
the common log-odds ratio, λj. The estimation methods used
in estimating β j 2 and λj differ (logistic regression uses an
iterative maximum likelihood approach, whereas the odds
ratio approach is noniterative), and thus, although the es-
timated values of β j 2 and λj will not necessarily be exactly
identical, they will typically be very close to one another in
value, as will be their estimated standard errors. This equiv-
alence has been demonstrated in previous applications of
these approaches (Alvarez & Penfield, 2007), and it suggests
that extremely similar results will be obtained using the lo-
gistic regression and odds ratio approaches. Furthermore,
the equivalence between β j 2 and λj suggests that β j 2 will be
proportional to �(bj). This proportionality is given by:

β j 2 ≈ a[�(b j )], (6)

where the symbol ≈ denotes an approximate equivalence
due to the difference in the ability variable used for the IRT
and logistic regression approaches.

Testing the null hypothesis of no DSF using the logistic
regression framework is conducted using a likelihood ratio
approach that is similar to that used for IRT approaches to
DSF and follows identical steps to those used in the applica-
tion of logistic regression methods to the evaluation of DIF
in dichotomously scored items (Camilli & Shepard, 1994;
Penfield & Camilli, 2007). The analysis of DSF using the lo-
gistic regression approach can be conducted using widely
available statistical software. The analyst must create the
J cumulatively coded dichotomized variables (one for each
of the J steps) within each polytomous item under investi-
gation. For each analysis (and a separate analysis must be
conducted for each step of each polytomous item), the sta-
tistical software (e.g., SPSS, SAS, Stat, R) will provide an
estimate of β j 2, and also display −2(likelihood) of the spe-
cific model being run, which can then be used in computing
the appropriate likelihood ratio tests.

The Concept of Nonuniform DSF
Despite the similarity of DSF to the study of DIF in dichoto-
mous items, there is an important difference when consid-
ering the between-group difference in the a parameter. In
dichotomous items, a between-group difference in the a pa-
rameter is easily interpretable as a nonuniform DIF effect—
the relative advantage of one group changes across the abil-
ity continuum (Camilli & Shepard, 1994; Penfield & Camilli,
2007). The concept of a nonuniform DSF effect, however, is
complicated by the mathematical forms underlying polyto-
mous item response models that define the step functions
described by Equation 1. For the majority of the widely used
polytomous response models (i.e., graded response model,
partial credit model, generalized partial credit model, rating
scale model), the value of the a parameter is restricted to
be constant across all J steps, and thus a unique nonuniform
DSF effect cannot exist within each step (for an elaboration
of this, as it pertains to DSF, see Cohen, Kim, & Baker, 1993).
As such, under the IRT definition of DSF given above, the
concept of a nonuniform effect is more relevant to the entire
item than it is to unique step-level processes. Because the

framework of DSF is based upon examining between-group
differences in the measurement properties that are unique to
each step, the between-group difference in the a parameter
can be considered to fall outside the realm of the DSF frame-
work. For this reason, we will focus our discussion of DSF
effects on the between-group differences in the step-level
difficulty parameters.

Although the definition of DSF provided in this article con-
cerns only uniform effects (i.e., between-group differences
in the step-level difficulty parameters only), the logistic re-
gression approach has the flexibility to examine step-level
nonuniform effects by including a term for the interaction
of group membership (G) and observed test score variable
(X). This approach is analogous to that described for exam-
ining nonuniform DIF effects in dichotomously scored items
(Swaminathan & Rogers, 1990) and has been demonstrated
in the application of logistic regression to DSF by French
and Miller (1996). Other contingency table (e.g., odds ratio)
approaches to examining nonuniform DIF in dichotomous
items (Mazor, Clauser, & Hambleton, 1994; Penfield, 2003)
could also be extended to the study of nonuniform DSF ef-
fects. However, the utility of examining nonuniform DSF has
not been addressed in the literature, and it remains unclear
how fruitful the study of nonuniform DSF effects would be in
practice.

Criteria for Interpreting DSF Effects
The ultimate utility of DSF analyses is increased if small,
medium, and large DSF effect sizes are defined. In gen-
eral, the same criteria commonly used for categorizing the
size of DIF effects in dichotomous items can be adopted
for the categorization of DSF effects. The most widely used
approach for classifying DIF magnitude is the ETS classifica-
tion scheme based on the common log-odds ratio estimator
(Zieky, 1993). Applying the effect size component of this
classification scheme to λ̂ j (the step-level log-odds ratio
estimator) yields the following criteria for the magnitude
of the DSF effects: | λ̂ j | < .43 corresponds to a small ef-
fect, .43 ≤ | λ̂ j | < .64 corresponds to a medium effect, and
| λ̂ j | ≥ .64 corresponds to a large effect. The criteria of .43
and .64 used in defining the three categories have intuitive
appeal because they correspond to odds of successful tran-
sition for one group that is approximately 1.5 times and 2.0
times that of the other group, respectively. Typically, steps
falling into the large category warrant additional review of
content for potentially biasing factors. However, examina-
tion of the pattern of the DSF effects to inform the location
of the potentially biasing factor requires the consideration of
the category associated with each step. Details of using the
pattern of DSF effect categories to inform the location of the
DIF effect are provided in Penfield et al. (2009).

Approaches for categorizing the DIF effects using logistic
regression have been based on the difference in R2 (R 2

d )
obtained between the model with the grouping term (i.e.,
β j 2 in Equation 5) and the model without the grouping term
(Jodoin & Gierl, 2001; Zumbo & Thomas, 1996). These initial
approaches proposed the following point values of R 2

d to
reflect DIF effect sizes: R 2

d = .02, .13, and .26 represent small,
medium, and large effects, respectively. We propose adapting
these point values of R 2

d to generate the following ranges of
R 2

d for classifying the DSF effects: R 2
d < .10 corresponds to
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a small DSF effect, .10 ≤ R 2
d < .20 corresponds to a medium

DSF effect, and R 2
d ≥ .20 corresponds to a large DSF effect.

It is also useful to note that the equivalence between β j 2
and λj suggests that their estimates are expected to be very
similar, and thus the ETS criteria described above for λ̂ j can
be applied equally to β̂ j 2.

Criteria for interpreting the magnitude of the DIF effect
using IRT approaches have not yet been firmly established
in the measurement literature. However, based on the rela-
tionship between �(bj), β j 2, and λj (see Equations 3 and
6), a sensible criteria can be established. As a general rule of
thumb, we recommend the following criteria for DSF effects
under an IRT model: |�(bj)| < .25 is a small effect, .25 ≤
|�(bj)| < .50 is a medium effect, and |�(bj)| ≥ .50 is a large
effect. These criteria correspond roughly to those presented
for λ̂ j .

Using DSF Results to Test for DIF
Under the condition of no DSF for each of the J steps, it
must be the case that no DIF exists. As a consequence,
it is possible to evaluate the presence of DIF through the
examination of the DSF effects. In particular, a test of the
null hypothesis of no DIF can be undertaken through the
test of the null hypothesis of no DSF at each of the J steps,
whereby an adjusted Type I error rate (e.g., a Bonferroni-
adjusted Type I error rate) is employed for each of the J tests
of DSF to control for an inflated Type I error rate resulting
from the multiple tests. If the null hypothesis of no DSF is
retained for all J steps, then the null hypothesis of no DIF
may be retained. If, however, the null hypothesis of no DSF
is rejected for one or more steps, then the null hypothesis of
no DIF can be rejected. This approach is referred to as the
simultaneous step-level (SSL) test of DIF (Penfield, 2007)
and was originally proposed in the context of the odds ratio
DSF estimator. Because the SSL test is based on the step-
level analyses, it does not require additional computation
over and above those conducted for the analysis of DSF. In
addition, the SSL test has been shown to be more powerful
than other widely used tests of DIF (Penfield, 2007) when
the magnitude and/or sign of the DSF effect varies across the
J steps.

To gain a deeper understanding of the properties of the SSL
test, it is necessary to distinguish between net and global tests
of DIF for polytomous items. Net tests of DIF are based on the
aggregation of the signed DSF effects across all steps, and
thus can be insensitive to divergent DSF effects. Examples of
net tests of DIF include Mantel’s chi-square (Mantel, 1963),
the Liu–Agresti cumulative common log-odds ratio estimator
and associated test statistic (Liu & Agresti, 1996; Penfield &
Algina, 2003), the standardized mean difference index and
associated test statistic (Dorans & Schmitt, 1993), and the
polytomous SIBTEST procedure (Chang, Mazzeo, & Roussos,
1996). In contrast, global tests of DIF consider the unsigned
DSF effects across all steps, and thus are expected to be
relatively sensitive under the condition of divergent DSF.
The SSL test is a global test of DIF because it does not
aggregate the signed DSF effects across the steps. As such,
the SSL test is expected to be more sensitive than net tests
of DIF when the DSF effects are divergent or vary greatly in
their magnitude. Other global tests of DIF exist, such as the
generalized Mantel–Haenszel chi-square statistic (Somes,

1986), and the relative performance of the SSL test to other
approaches has not yet been explored in the literature. In
general, net measures of DIF have been shown to be more
sensitive than global measures when the DSF effects are
constant across the steps, but global measures have been
shown to be more sensitive than net measures when the
DSF effects vary in sign and/or magnitude across the steps
(Penfield, 2007; Wang & Su, 2004).

Using DSF and DIF in Combination
As described throughout this article, the framework of DSF
offers numerous advantages for the examination of measure-
ment invariance in polytomous items. But how should DSF
be used in relation to traditional measures of DIF? Does the
study of DSF nullify the need for traditional DIF indices? Or
should DSF be used in a supporting role for the traditional
analysis of DIF in polytomous items? We argue for the latter
and recommend using indices of DIF and DSF in combination
to garner the most sensitive and comprehensive information
possible concerning the item. The test of DIF addresses the
issue of whether there is a violation of invariance somewhere
among the J steps, and the evaluation of DSF can provide rich
information concerning the location and causes of the DIF
effect.

As described in the previous section, global and net tests
of DIF are relatively more sensitive to different forms of in-
variance; global tests of DIF are more powerful than net tests
when the DSF effects are divergent or vary dramatically in
magnitude across the steps, and net tests of DIF are more
powerful than global tests when the DSF effects are relatively
constant across all steps. As a result, we recommend using
one global test of DIF (e.g., the SSL test or the generalized
Mantel–Haenszel test) and one net test of DIF (e.g., the
standardized mean difference, the Liu–Agresti cumulative
common log-odds ratio, polytomous SIBTEST). If either of
the global or net tests of DIF is significant, then an evaluation
of the DSF effects should be pursued to explain the magni-
tude and cause of the DIF effect. This recommendation is
consistent with that previously proposed by Penfield et al.
(2009). Ultimately, we expect that using measures of DSF
in combination with net and global tests of DIF can provide
a more sensitive test of measurement invariance than using
either approach in isolation.

An Example of a DSF Analysis
We will now illustrate the use of DSF and the associated in-
terpretive issues presented earlier in this article using real
educational achievement data. We conducted a DSF analysis
on 30 polytomous items obtained from the 2001 Mathematics
Assessment of the School Achievement Indicators Program
(SAIP). The SAIP is a cycle of assessments in mathemat-
ics, science, reading, and writing developed by the Council
of Ministers of Education, Canada, and administered across
Canada between 1993 and 2004. These items primarily as-
sessed mathematical skills in algebra, measurement, geom-
etry, and data management. Data from English and French
versions of the SAIP administered in two large Canadian
provinces were analyzed. Of the 7,519 participants, 4,652
(61.9%) were administered the English version of the SAIP,
and 2,867 (38.1%) were administered the French version.
For the purpose of this study, students who took the French
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version of the test were designated as the reference group,
and students who took the English version were designated
as the focal group.

An evaluation of DSF for each of the 30 polytomous items
was conducted using the odds ratio approach (as described
earlier in this article). The step-level common log-odds ra-
tio ( λ̂ j), its estimated standard error, and the correspond-
ing test statistic were computed using the DIFAS computer
program (Penfield, 2005). Once the DSF estimates were ob-
tained, the pattern of the DSF effects for each item was ana-
lyzed and interpreted. To demonstrate how the DSF analysis
can be conducted in conjunction with the analysis of DIF,
a global and a net test of DIF were also conducted for each
item. A global test of DIF was conducted using the SSL test
with a Bonferroni-adjusted Type I error rate (.05/J) for each
step. A test of net DIF was conducted using the Liu–Agresti
cumulative common log-odds ratio (LA), which was divided
by its estimated standard error, resulting in a z-statistic that
can be used as a net test of no DIF (Penfield & Algina, 2003).
Although we implemented an odds ratio approach in the cur-
rent analysis, logistic regression and IRT approaches could
have been used and would be expected to yield results that
are consistent with those presented here.

Six of the 30 items had a significant test of net or global
DIF. Table 1 presents, for these six items, the DSF effect
estimates ( λ̂ j), estimated standard errors, the associated
z-statistics, the form of the DSF pattern, and the values of
LA and its associated test statistic. Note that all six items led
to a significant global test of DIF (the SSL test), and all but
one item (item 13) led to a significant net test of DIF (the

Table 1. Results of the DSF Analysis

Item Step �̂j SE (�̂j ) z (�̂j ) DSF Size DSF Form DIF Effect

Item 6 Step 1 .74 .14 5.33∗ Large Pervasive: LA = .76
Step 2 1.25 .50 2.49 Large Constant z(LA) = 5.55∗

Item 7 Step 1 .52 .07 7.57∗ Medium Pervasive: LA = .54
Step 2 1.91 .51 3.76∗ Large Convergent z(LA) = 7.94∗

Item 13 Step 1 .01 .07 .12 Small Nonpervasive: LA = .04
Step 2 −.03 .06 −.42 Small Constant z(LA) = .83
Step 3 −.03 .06 −.49 Small
Step 4 .69 .13 5.55∗ Large

Item 15 Step 1 .77 .71 1.09 Large Pervasive: LA = .41
Step 2 1.02 .59 1.73 Large Convergent z(LA) = 8.12∗
Step 3 .90 .43 2.11 Large
Step 4 .40 .05 7.80∗ Small

Item 16 Step 1 −1.12 .06 −20.42∗ Large Nonpervasive: LA = −.59
Step 2 −.26 .06 −4.08∗ Small Divergent z(LA) = −10.89∗
Step 3 −.30 .07 −4.65∗ Small
Step 4 1.32 .28 4.70∗ Large

Item 30 Step 1 1.31 .23 5.58∗ Large Nonpervasive: LA = .41
Step 2 1.17 .17 6.91∗ Large Constant z(LA) = 7.32∗
Step 3 .85 .14 6.02∗ Large
Step 4 .20 .05 3.75∗ Small

Note. The symbol �̂j corresponds to the cumulative step-level log-odds ratio estimator, SE( �̂j ) corresponds to the estimated
standard error of �̂j , z( �̂j ) corresponds to �̂j / SE( �̂j ), LA corresponds to the Liu–Agresti cumulative common log-odds ratio,
and z corresponds to the LA divided by its estimated standard error. The asterisk (∗) next to z( �̂j ) indicates the values of
z( �̂j ) that exceeded the critical value associated with a standard normal distribution using the step-level Type I error rate of
.05/J (i.e., a Bonferroni adjustment associated with a familywise Type I error rate of .05). The asterisk (∗) next to z(LA) indi-
cates the value of z(LA) that exceeded the critical value associated with a normal distribution using a Type I error rate of .05 (i.e., 1.96).

Liu–Agresti test). Also note that the DSF pattern was based
purely on the magnitude of the DSF effects (i.e., not on the
significance of the DSF effects).

Items 6, 7, and 15 were labeled as having pervasive DSF
because all steps displayed a substantial DSF effect. The
presence of pervasive DSF suggests that a biasing factor may
exist at the item level. Item 6 displayed pervasive DSF that
was constant, providing further evidence that the cause of
the DIF effect resided in the item stem. Item 7 displayed a
very large DSF effect for step 2 and a moderate DSF effect
for step 1. This pattern suggests that the potentially biasing
factor was more salient for the highest score category. Items
6 and 7 both required interpretation of the same graph of
driving speed against time. The biasing factor for both items
may be a difference in the availability and use of instruc-
tional technology (e.g., use of motion sensors and graphing
calculators) among schools. Item 15, which required exam-
inees to interpret the differences between two pie charts,
displayed the largest DSF effects for the middle steps, sug-
gesting that the biasing factor was most salient in the middle
score categories, but the lack of a zero DSF effect in the
highest score category suggests that the biasing factor is not
restricted to the middle score categories. As a result, the DSF
observed in item 15 appears to be attributable to an item-level
effect.

Items 13, 16, and 30 displayed nonpervasive DSF, sug-
gesting that the potentially biasing factors are localized to
individual score categories. Item 13 displayed a large DSF
effect only for the final step, indicating that the biasing fac-
tor resides in the highest score category, suggesting that
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the biasing factor may well be in the scoring criteria for the
highest score level. This item is categorized as having non-
pervasive DSF that is constant (items exhibiting DSF in only
one step are always labeled as having a nonpervasive con-
stant pattern). It is also of interest to note that the net test
of DIF (and the value of LA) was insensitive to the large DSF
effect present in a single step. This provides a valuable ex-
ample of the importance of considering DSF in combination
with DIF: a traditional investigation of DIF using a net DIF
index would have missed this lack of measurement invari-
ance. Item 16, which required examinees to continue a linear
pattern, displayed an instance of divergent DSF, such that
the first step displayed a relative advantage for the English
group, and the fourth step displayed a relative advantage for
the French group. The DSF pattern observed in this item
provides evidence of two distinct step-level effects favoring
opposite groups at play in a single item. As a result, inves-
tigation of the potential biasing factor against the English
group should focus on the highest score category (in line
with the DSF effect of the fourth step), and investigation of
the potential biasing factor against the French group should
focus on the second highest score category (in line with the
DSF effect of the first step). The French version of item 16
included a line reminding the examinees to show their work;
the English version omitted this line. We would recommend
beginning a search for the biasing factor by examining how
whether students showed their work was considered in the
scoring criteria for the top two score levels for this item.
Item 30 displays a relatively constant DSF effect across the
first three steps, indicating that a potentially biasing factor
is localized to the second, third, and fourth score levels (i.e.,
not to the lowest and the highest score levels). Item 30 is
the last question on the test, and the biasing factor is likely
related to the differential speededness of the test in the two
versions.

Concluding Remarks
Identifying and removing sources of bias from tests and test
items is critically important to ensure that the tests are fair
for all examinees. Although most test developers have well-
established and rigorous procedures for identifying possibly
biased dichotomously scored items, the available procedures
for polytomously scored items have been less informative.
Traditional approaches to detecting DIF in polytomous items
may miss subgroup differences in difficulty that are specific to
one or two score levels within a polytomous item and provide
little information to help identify whether the source of the
bias is in the item stem or in a particular aspect of the scoring
criteria.

The possibility of failing to detect potential bias in polyto-
mous items is particularly troubling when we consider that
a polytomous item’s contribution to an examinee’s score is
usually equivalent to several multiple-choice items. In effect,
bias in a single score level within a polytomous item may have
as large an impact as bias in a multiple-choice item, yet it
may go undetected by traditional approaches.

Our goal in writing this article was to describe and demon-
strate the advantages of DSF as a supplement to traditional
DIF analyses of polytomous items. Already, one specialized
DSF computer program (DIFAS; Penfield, 2005) exists, and
this article provides the information test developers and re-
searchers would need to perform DSF analyses using other

computer programs, making DSF analyses feasible, even for
large testing programs.

Appendix
Self-Test

1. Describe the difference between DIF and DSF.
2. There are two specific benefits of using the DSF frame-

work in conjunction with the traditional DIF framework.
Describe these two benefits.

3. A polytomously scored item has four score levels. How
many DSF effects are associated with this item?

(a) 2
(b) 3
(c) 4
(d) 5

4. A DSF analysis indicates the following trend in DSF effects
across the steps of an item: λ̂1 = −.6, λ̂2 = 0, λ̂3 = .6.
What form of DSF best represents this pattern of DSF
effects?

(a) Nonpervasive divergent
(b) Pervasive convergent
(c) Nonpervasive convergent
(d) Pervasive divergent

5. DSF analysis indicates the following trend in DSF effects
across the steps of an item: λ̂1 = 0, λ̂2 = .4, λ̂3 = .8. What
form of DSF best represents this pattern of DSF effects?

(a) Nonpervasive divergent
(b) Pervasive convergent
(c) Nonpervasive convergent
(d) Pervasive divergent

6. If the DSF effect for each step of a polytomous item is
zero, then

(a) DIF cannot exist for the item.
(b) DIF must exist for the item.
(c) It is possible, but not necessary, for DIF to exist for

the item.
7. Suppose that a DSF analysis is conducted using the log-

odds ratio approach. A colleague recommends that you
also run a DSF analysis using the logistic regression ap-
proach. Would you expect to obtain similar results?

8. An IRT analysis is conducted and it obtains the following
parameter estimates for the reference and focal groups:
âR = âF = 1.5, b̂1R = −1.5, b̂1F = −1.2, b̂2R = 1.0,
b̂2F = 1.6. Based on this information, what value best
approximates the log-odds ratio DSF effect estimator for
the second step ( λ̂2)?

(a) λ̂2 = 0
(b) λ̂2 = .3
(c) λ̂2 = .6
(d) λ̂2 = .9

9. A DSF analysis indicates the presence of a constant per-
vasive DSF pattern. This pattern of DSF effects is most
consistent with which of the following causes?

(a) A problem associated with only one score level.
(b) A problem associated with several, but not all, score

levels.
(c) A problem associated with the stem or prompt of

the item.
10. Consider a polytomously scored item having score levels

0, 1, 2, 3, and 4. A DSF analysis of this item reveals the
following DSF pattern: �(b1) = 0, �(b2) = 0, �(b3) =
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.6, �(b4) = 0. Which of the following conclusions is most
consistent with the obtained DSF effect estimates?

(a) The DSF is likely attributable to a property of score
level 2.

(b) The DSF is likely attributable to a property of score
level 3.

(c) The DSF is likely attributable to a property of score
level 4.

(d) The DSF is attributable to the properties of score
levels 1, 2, and 3.

Answers to Self-Test
1. DSF concerns whether between-group differences in each

step function exist. Because the step functions deter-
mine the characteristic curve of each score level, DSF
ultimately can be linked to which score levels are impli-
cated in a DIF effect. In contrast, DIF concerns whether
between-group differences in the score-level characteris-
tic curves exist, but does not provide information about
which score levels manifest the DIF effect.

2. Two benefits of DSF are: (a) DSF provides useful infor-
mation for identifying the portion of the item responsible
for a DIF effect, which can help test developers target
potentially biasing factors; and (b) evaluating DIF using
a DSF framework can be more powerful than traditional
omnibus approaches for evaluating DIF if the DSF effects
vary in sign and/or magnitude across the steps.

3. The correct answer is (b). The number of steps is equal
to the number of score levels minus 1.

4. The correct answer is (a) because the DSF effects differ
in sign and magnitude across the steps.

5. The correct answer is (c) because the DSF effects differ
in magnitude, but not sign, across the steps.

6. The correct answer is (a).
7. Yes, the results are expected to be very similar. The DSF

effect modeled using logistic regression is equivalent to
the conditional log-odds ratio.

8. The correct answer is (d) because of the relationship
λj ≈ a�(bj).

9. The correct answer is (c).
10. The correct answer is (b).
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