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Estimating Item Response Theory Models
Using Markov chain Monte Carlo
It has become increasingly common in educational measure-
ment to use Markov chain Monte Carlo (MCMC) techniques
for estimating item response models (see e.g., Beguin &
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Glas, 2001; Bolt & Lall, 2003; Bradlow, Wainer, & Wang, 1999;
De la Torre, Stark, & Chernyshenko, 2006; Fox & Glas, 2001;
Johnson & Sinharay, 2005; Patz & Junker, 1999a). MCMC
offers many advantages, including its relative ease of imple-
mentation and the availability of free software for its use.
Many researchers have found MCMC to provide a framework
within which to experiment with new models needed for spe-
cialized measurement applications before going to the more
challenging process of implementing maximum likelihood
procedures, for example. MCMC also represents an estima-
tion strategy that is firmly rooted in a perspective of Bayesian
inference, which makes it appealing for IRT applications ori-
ented around this perspective (see, e.g., Glas & Meijer, 2003;
McLeod, Lewis, and Thissen, 2003; Zwick, Thayer & Lewis,
2000).

Despite these advantages, the MCMC methodology
presents a number of unique challenges. MCMC algorithms
can be quite sophisticated, and their proper use requires
careful attention to several facets of implementation. Be-
cause of its complexity, MCMC can also be easily misused,
and in many cases it may be difficult for users to ascertain
whether the results of an MCMC analysis can be taken with
confidence, especially with more challenging models. One of
the other primary drawbacks of MCMC is its heavy computa-
tional demand. The sampling procedures that underlie the
MCMC methodology generally require a very large number
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of iterations before model parameters can be reliably esti-
mated. It is not uncommon for a single estimation run to
take several hours, or even a day or more, for more complex
models or when analyzing large amounts of data.

The purpose of this module is to provide an introduc-
tion to MCMC methods and to illustrate their application
in estimating item response models. In that context, we
also discuss the WINBUGS software (Spiegelhalter, Thomas,
Best, & Lunn, 2003; downloadable at http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml), a computer
program that allows for easy implementation of various
MCMC procedures. WINBUGS can be used to fit a host of
different statistical models and has built in graphical and
analytical tools that help the user monitor the estimation
process and evaluate results. Admittedly, the topic of MCMC
is a difficult one to present in an introductory way in a single
paper; as a result, we will frequently refer to some useful
references addressing different aspects of this topic to fill in
details. In addition, the reader may find it helpful to have
a software package like WINBUGS at their disposal in ex-
perimenting with certain aspects of MCMC. The WINBUGS
package comes with several example models and data sets,
including some specific to item response theory, that can
help in learning the methodology. Clearly one of the best
ways to learn MCMC techniques is to experiment with the
procedure using models and datasets that are already fa-
miliar. Prior to discussing the specifics of MCMC, however,
we review some basic principles of the Bayesian theoretical
framework, as this ultimately provides the foundation for the
MCMC methodology.

Brief Overview of Bayesian Inference

Any attempt to understand MCMC requires familiarity with
the core principles of Bayesian inference. The centerpiece
of this framework is Bayes’ theorem. (Readers previously
unfamiliar with this topic may find it useful to study Congdon
(2001) or similar sources before attempting to work MCMC
methods.) Bayes’ theorem is often portrayed in terms of
the probabilities of discrete events, say an event “A” and an
event “B.” For example, in a medical context, event A could
represent the presence (or absence) of a particular type of
disease, say the measles, and event B the outcome of a test
for the disease returning a result “positive” or “negative.”
From Bayes’ theorem, we know that

P(A | B) = P(B | A)P(A)

/[∑
A

P(B | A)P(A)

]
, (1)

where we refer to P(A | B) as the posterior probability of A
given B (e.g., the probability of having the measles given the
result of the test); P(A) as the prior probability of A (e.g.,
the prior probability of having measles), and P(B | A) as the
conditional probability of B given A (e.g., the probability of
a particular test result given the presence or absence of the
measles).

The summation in the denominator of the right hand side
of (1) represents an accumulation across all possible out-
comes of event A (e.g., has the measles, doesn’t have the
measles), and thus can also be taken as the probability of B,
P(B) (i.e., the overall probability of a particular test result).
Ultimately, Bayes’ theorem provides a representation of the
conditional probability of one event given another (i.e., A

given B, or the probability of measles given the test result)
in terms of the opposite conditional probability (i.e., B given
A, or the probability of a particular test result given the pres-
ence or absence of the measles). For example, suppose it is
known that the probability of a positive test result given that
one truly has the measles is .95, the probability of a false pos-
itive is .02, and the overall probability of having the measles
among those tested is .10. Using Bayes’ theorem (as shown in
equation 1) we can determine that the probability of having
the measles given the positive test is (.95)(.10)/[.95(.10) +
.02(.90)] = .84.

When fitting an item response model to item response data,
practitioners are faced with a situation that reflects Bayes’
theorem. Usually a primary goal in fitting an IRT model is to
obtain information about parameters of the item response
model (e.g., item difficulty, item discrimination, examinee
ability) from the item response data. In terms of Bayes’
theorem, this information is reflected in the relative likeli-
hood(s) of particular parameter values for the model (“event
A”) given the observed item response data (“event B”). The
chosen IRT model (e.g., two-parameter logistic model; 2PL)
provides a basis for describing the opposite conditional prob-
ability, namely the probability of the item response data (B)
given the model parameters (A).

Although at a conceptual level this idea fits, Bayes’ theorem
as portrayed in (1) is inappropriate for most item response
theory applications as item and ability parameters are gener-
ally continuous values, not discrete events. Consequently we
cannot consider the “probability” of their occurrence as we
can for finite discrete outcomes. It will therefore be more con-
venient to portray Bayes’ theorem in the form of continuous
probability density functions, which represent the relative
likelihood of each outcome. Familiar examples of probabil-
ity density functions include the normal density function,
which takes the form of the familiar bell-shape curve. In the
IRT context, Bayes’ theorem can be written with respect to
probability density functions as:

f(� | X) = f(X |�) ∗ f(�)

/
∫

�

f (X |�) f (�) d�



(2)

where X denotes all of the item response data (i.e., the
correct/incorrect scores of each examinee to each item),
and � all of the unknown parameters, which in IRT generally
consist of item and person parameters. The use of “f(·)” in
place of “P(·)” and “

∫
” in place of “

∑
” in (2) compared to (1)

accounts for the continuous nature of the parameter values.
One other fundamental difference between (1) and (2) is
that � represents many parameters (i.e., multiple “events”),
and X many observed outcomes, implying that the quantities
in (2) should be thought of as multivariate outcomes rather
than univariate ones. Consequently, we will view � as a set
of hypothetical outcomes for all of the item and examinee
parameters in the model.

The left hand side of (2), referred to as the joint posterior
density (of the model parameters given the data), is used to
determine estimates of the model parameters. To evaluate
it requires knowledge about the quantities on the right hand
side. The quantity f(X |�), which expresses the likelihood of
the item response data given all of the model parameters, is
defined by the item response model (e.g., 2PL) along with its
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associated assumptions of local independence. The quantity
f(�) is the prior density of the model parameters, and can
be thought of as indicating the relative likelihoods of partic-
ular parameter values “prior to” data collection. The quantity
in the denominator is now written in terms of integration (as
opposed to discrete summation) of the conditional distribu-
tion of the data given parameters over the parameter space,
and is a constant for a fixed data set. It is often referred to as a
normalizing constant as its value generally makes f(� | X )
a proper density. Because this value is typically unknown
(and often not easy to determine), we sometimes write:

f(� | X) ∝ f(X |�) ∗ f(�) (3)

to indicate that the joint posterior density is “proportional
to” the product of the quantities on the right hand side.
This proportionality relationship is often the basis for sam-
pling procedures that underlie MCMC, as it makes it pos-
sible to evaluate (and sample with respect to) the rela-
tive likelihoods of different sets of parameter values even
if the exact density of the posterior density cannot be
determined.

The ultimate goal of MCMC is to reproduce the f(� | X )
distribution. Although this distribution cannot often be de-
termined analytically, as in our earlier example, it is often
possible to sample observations with respect to it (for de-
tails, see Spiegelhalter, Thomas, Best, and Gilks, 1995). By
sampling enough observations, it becomes possible to deter-
mine characteristics of the distribution, such as its mean
and variance, that can be the basis for model parameter esti-
mates. The precise mechanism by which sampling is best con-
ducted varies depending on the known features of f(� | X );
consequently, there are various different types of sampling
algorithms considered within MCMC. Once an appropriate
sampling procedure is determined, aspects of the posterior
relevant for determining parameter estimates, such as the
mean and standard deviation, become possible through com-
puting corresponding characteristics of the generated sam-
ple, such as its mean and standard deviation.

A fundamental difference between MCMC and other popu-
lar estimation techniques such as maximum likelihood (ML)
estimation is the emphasis in Bayesian inference on esti-
mating distributions, as opposed to point estimates, when
describing model parameters. On the one hand, this allows
a potentially richer description of the parameter estimate
distribution than is usually provided in ML estimation. How-
ever, it is not uncommon to see MCMC methods used in
a frequentist fashion, where point estimates (e.g., mean of
posterior) and standard errors (e.g., standard deviation of
posterior) are reported (see Rupp, Dey, and Zumbo, 2004 for
more discussion of these issues).

Implementation of MCMC with IRT Models

Despite various approaches that can be applied in implemen-
tation of MCMC methods, a common set of considerations
apply. Below, we outline some issues in the selection of pri-
ors, sampling procedures, diagnostics for evaluating chain
convergence, and model comparison and fit issues under
MCMC.

Specification of priors
IRT practitioners frequently use priors in ML estimation, es-
pecially when using IRT estimation programs such as BILOG

(Mislevy & Bock, 1989) or MULTILOG (Thissen, 1991). Al-
though not strictly needed in ML, priors allow known informa-
tion about the characteristics of items to be incorporated into
the estimation process, and can also be useful in addressing
problems in estimation, such as when the data provide very
little information about certain parameters (e.g., the “guess-
ing” parameter in the three parameter logistic model). Unlike
in ML however, in MCMC specification of priors of some sort
is always necessary for all item and examinee parameters
in IRT models, as the prior densities are needed to define
the posterior densities. Because of the fundamental role of
priors in MCMC, there are several important considerations
in selecting them. One concerns the distributional family
chosen for the prior. Where possible, it is usually desirable
to select priors that are conjugate priors. By definition, con-
jugate priors are priors that return posterior distributions
from the same family of distributions as the prior. This is
appealing because it implies the distributional form of the
posterior is known, which makes sampling from it much eas-
ier. As seen in Equation (2), the prior density interacts with
the specified model in determining the form of the posterior.
Thus, the existence of conjugate priors also depends on the
type of model chosen.

As a more general statistical modeling example, suppose
a sample of observations (say X = 5, 2, 4, 4, 9, 2, 3, 6) were
assumed to come from a normal distribution with unknown
mean (µ) and known variance of 1. The specification of a
normal prior for the unknown mean (µ), say Normal(5, 2),
would return a posterior for the mean that was also normal,
as the normal prior is a conjugate prior for the mean of
a normally distributed variable. Specifically, based on the
example data, the posterior distribution f(µ | X) can be
shown to be Normal with an approximate mean of 4.4 and
variance of .12 using Equation (2). Conjugate priors are
thus desirable in that they result in posterior distributions
of a known functional form, and thus make sampling in
MCMC more computationally efficient. Any prior other than
a normal prior would in this case be a nonconjugate prior,
thus rendering a posterior of unknown distributional form.
Various tables can be consulted (see e.g., Spiegelhalter et
al., 1995, p. 21) for determining conjugate priors for the
parameters of a given model.

A second issue in selecting priors concerns the chosen
strength of the priors. The influence of the priors can often
be controlled through the parameters specified for the prior
distribution, referred to as hyperparameters. In the above
example, the specified variance of the prior distribution for
the population mean (a hyperparameter) could be reduced
from 2 to .2 in order to increase the strength of the prior. Note
that by reducing the variance of the prior, we are indicating
a higher level of confidence in the likely values of the param-
eter. The posterior density naturally then also changes, and
is now a normal density with mean of approximately 4.6, and
a variance of approximately .08. In effect, the stronger prior
has reduced the influence of the data (sample mean of X =
4.375) relative to the prior in determining the distributional
characteristics of the posterior distribution.

Figure 1 provides an illustration of the two example prior
densities and the resulting posterior densities. The greater
strength of the prior with smaller variance is seen from its
sharper peak. The posterior densities, both normal, have
means at the estimates of µ mentioned above.

It is important to note that the hyperparameters need not
be assigned specific values. In fact, the hyperparameters can
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FIGURE 1. Illustration of Prior and Posterior Density Functions for Unknown Mean (�) of Normal Distribution.

themselves be assigned priors in the form of hyperpriors. For
example, in an IRT model, we may assign a normal prior to
the difficulty parameters of the items, but regard the mean of
this prior as unknown, with some specified prior distribution.
The use of hyperpriors provides a way in which the strength
of priors can be reduced. The use of hyperpriors introduces
a hierarchical structure to the model that is sometimes por-
trayed in graphical form. For details, see Baker and Kim
(2004, pp. 303–305).

To allow the data to provide as much information as pos-
sible regarding the posterior density, highly noninformative
priors can be assigned to model parameters by specifying a
very large variance, for example. Noninformative priors ulti-
mately reduce the influence of the prior in defining the pos-
terior distribution. Under some conditions, it may be possible
to assign an improper prior, essentially a prior that assumes
all values are equally likely, implying no known prior infor-
mation about the parameter. However, such priors cannot be
implemented within WINBUGS.

Finally, it should be noted that even when conjugate priors
do not exist for a given IRT model, it is often possible to specify
priors of a form that will render posterior densities that have
known properties that can be used to make MCMC sampling
more efficient (see, for example, Speigelhalter et al., 1995,
p.13). We return to this issue in more detail shortly when
discussing the WINBUGS program.

Sampling Procedures
Once the data have been collected, an IRT model has been
chosen, and priors have been specified for all model pa-
rameters, sampling becomes possible. As noted earlier, the
objective of MCMC is to define a mechanism by which ob-
servations can be sampled from the joint posterior density
of model parameters shown in (2). This makes the itera-
tive process conducted under MCMC considerably different
from that conducted in ML, as the sampled values do not
“converge” to a point estimate of the model parameters, but

rather a distribution that represents the posterior distribu-
tion of the model parameters.

Although we will not go into much detail on the specific al-
gorithms that have been proposed for this purpose, it is worth
noting that the algorithms frequently differ in terms of their
efficiency and rates of convergence, and since computational
time is one of the primary drawbacks of MCMC, the chosen
sampling mechanism is an important consideration. Details
on some different approaches common in IRT can be found
in Patz and Junker (1999b), and for more general statistical
models in Gilks, Richardson and Spiegelhalter (1996). We
briefly describe two of the more common procedures below.

(a) Gibbs sampler
The Gibbs sampler provides a mechanism by which sampling
can be performed with respect to smaller numbers of parame-
ters, often one at a time. In this latter case, the Gibbs sampler
samples with respect to univariate conditional distributions
of the model parameters. Unlike the full joint posterior dis-
tribution, the conditional distributions, denoted f(�k | X,
�−k) represent the posterior distribution of a single model
parameter �k conditional upon the data X and all other
model parameters �−k . For example, under an IRT model,
a univariate conditional distribution could correspond to the
difficulty parameter of a single item given the data and all
other item and ability parameters. Under Gibbs sampling,
each parameter is then sampled individually with respect to
its conditional distribution, regarding all the other param-
eters as known. In this respect, the Gibbs sampler can be
viewed as a type of “divide and conquer” strategy (Patz &
Junker, 1999b), as each parameter is updated one at a time.

An important consideration in implementing the Gibbs
sampler involves choosing priors that result in conditional
distributions that can make sampling efficient. As noted,
when conjugate priors are chosen, the posterior distribu-
tions have a known form, and samples can often be gener-
ated directly from that distribution. However, in IRT models,
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direct Gibbs sampling has only been implemented for normal
ogive IRT models, and even then requires use of a process
referred to as data augmentation. Details are provided in
Albert (1992), Baker (1998), and Bradlow et al. (1999).

Due to its use of known conditional distributions for sam-
pling, implementation of Gibbs sampling is often straightfor-
ward as standard statistical software can be used to generate
the samples. Details on the generation of these samples are
provided shortly.

(b) Metropolis Hastings
Alternative procedures to Gibbs sampling are needed when
the conditional distributions are not of a known distribu-
tional form. This is generally the case when logistic IRT mod-
els (e.g., two-parameter or three-parameter logistic models)
are estimated. Patz and Junker (1999b) discuss the use of
Metropolis Hastings sampling in such contexts. The Metropo-
lis Hastings method makes use of the proportionality rela-
tionship established in Equation (3). In effect, the samples
are indirectly taken from the joint posterior by generating
candidate observations from proposal distributions. For ex-
ample, the proposal distribution might be a normal distribu-
tion, with mean determined by current state of the parameter
in the chain, and a specified variance. These candidate ob-
servations are then chosen as a new state for the chain in
proportion to their relative likelihood (based on Equation
3) compared against the current state of sampled parameter
values in the Markov chain. If the candidate state is rejected,
the previous state is retained as the new state. Key issues in
implementing a Metropolis Hastings strategy revolve around
construction of the proposal distributions, as the frequency
with which the candidate observations are retained affects
the efficiency of the algorithm (see Patz and Junker, 1999b
for further discussion of this issue). For example, the value
of the constant variance chosen in the above example will
likely have a substantial influence on how frequently the pro-
posal distributions return values that are accepted as new
states for the chain.

Monitoring the Markov chain
Once a sampling mechanism has been determined, observa-
tions are randomly and repeatedly sampled in an iterative
fashion producing a series of observations that represent
states in a Markov chain. To begin the sampling process, it
is necessary to specify an initial set of values for the model
parameters. These values can be randomly generated, or in
some other way be systematically defined, such as educated
guesses as to point estimates of the model parameters. Re-
gardless of the method used, we refer to this first state as the
starting state of the chain. However, the sequence of values
produced in this chain will not be independent; new states
will likely be affected by previous states, as the conditional
distributions of parameters are defined at least in part by
the values of the previous state. This is particularly true un-
der Metropolis Hastings which, as noted, has the potential
to retain the previous state as its current state. As a result,
there will typically be a positive correlation between param-
eter values sampled at successive states in the chain. This
not only makes it inappropriate to view a small number of
states as a random sample from the posterior, but also makes
the initial sampled states of questionable value, as they will
likely be influenced by the starting state. It is therefore com-

mon to dismiss a number of the initial states (referred to
as “burn-in” states) and to estimate the posterior only from
observations sampled after the burn-in period. For example,
with IRT models, it has been common to dismiss the first 500
or so states as burn-in iterations.

Another critical issue in monitoring the simulated states of
the Markov chain involves evaluating chain convergence. The
sequence of states for the Markov chain should theoretically
converge to a stationary distribution such that the sampled
observations can be viewed as a sample from the posterior
distribution of the model parameters. The rate at which this
convergence occurs can vary depending on several factors.
First, high correlations between adjacent states imply a slow
rate of convergence, thus requiring a very large number
of iterations before the sampled states can be viewed as a
sample from the posterior. Second, the sampling algorithm
used can also affect the rate of convergence. For example,
under Metropolis Hastings, if the candidate states generated
from proposal distributions are rarely selected, longer chains
will be needed. Other causes of nonconvergence may relate
to identification problems with the model.

Detecting convergence is an important part of determin-
ing whether an MCMC run has been successful. Lack of
convergence can sometimes be apparent from an inspec-
tion of the history of the chain. The sampling histories of
the chains are often graphically depicted as in Figure 2.
Figures 2(a) and (b) provide example illustrations of two
chains, one of which shows a high likelihood of convergence
(a), the other of which demonstrates nonconvergence (b).
Various diagnostic criteria/indices can also be applied to
observations from the chain to evaluate the likelihood of
convergence. Several are implemented within the computer
program CODA v0.3 (Best, Cowles, & Vines, 1996) that can
be run under statistical programs such as R or Splus, and is
used in conjuction with WINBUGS output. One example of a
convergence diagnostic is Geweke’s (1992) criterion. Under
Geweke’s approach, a z score is computed from the sampled
states for each parameter. The z-score for a given parameter
is defined by taking the difference between the mean of the
first 10% of states, and the mean of the last 50% of states, and
dividing by their pooled standard deviation. Z-values within
a range of non-significance (e.g., −1.96 ≤ z ≤ 1.96) can
be taken as evidence of convergence. A similar approach by
Raftery and Lewis (1992a) considers the number of samples
needed to estimate quantiles of the posterior with sufficient
precision. The Raftery and Lewis criterion returns an index,
I, indicating the increase in the number of sampled states
needed to reach convergence due to autocorrelations in the
chain; values of I > 5.0 indicate problems with convergence.

Still another strategy for evaluating convergence is to sim-
ulate multiple chains, each based on a different starting
state. If the chains converge to the same stationary distribu-
tion, as is often reflected by a large overlap in their sampling
histories, there is a strong likelihood of convergence. As
with a single chain, diagnostic indices can also be applied to
multiple chains to evaluate convergence. An example is the
Gelman and Rubin (1992) criterion. The Gelman and Rubin
test is based on a comparison of the variances within and
between chains for each parameter. From these quantities,
a variance ratio statistic

√
R̂ is then computed for each

parameter, where
√

R̂ ≈ 1 is taken to imply convergence.
Taken together, criteria such as those mentioned above

lend credibility to the results from a Markov chain Monte
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FIGURE 2. Examples of Sampling Histories Associated with Markov Chains Displaying Evidence of Convergence (a) and
Nonconvergence (b).

Carlo analysis as a basis for approximating the joint posterior.
Various other criteria also exist for evaluating convergence,
as described in Best, Cowles and Vines (1996). It is important
to note, however, that even satisfaction of the above criteria
should not be taken as a guarantee of convergence. For
additional information on the issue of convergence under
MCMC within psychometric models, see Sinharay (2004).

Constructing posterior distributions
Once sufficient evidence of convergence has been obtained,
the simulated chain can be used to construct the marginal
posterior distributions that are the basis for model parameter
estimates. Several additional issues are considered in this
process. The first concerns the number of burn-in states to
dismiss. Raftery and Lewis (1992b) recommend basing this
decision in part on the estimated autocorrelations (i.e., the
correlations between adjacent states) in the chain, which
can be estimated using CODA. The length of the burn-in
should naturally be at least as large as the distance between
samples needed to achieve an autocorrelation of 0. However,
because the actual burn-in usually involves a relatively small
number of iterations (<1% of the total), the effect of some
inaccuracy is generally of minimal significance.

A second consideration involves the possibility of thinning
the chain. For example, rather than including all states of the
chain, it is possible to choose only every fifth or tenth state, for
example, if substantial autocorrelations are present. When
thinning is not used, CODA also has procedures that can
appropriately adjust the standard errors of the parameter
estimates to account for the autocorrelations.

Finally, in determining how many sampled states of the
chain are necessary, it is important to recognize the influ-
ence of Monte Carlo standard errors on the results (Patz
and Junker, 1999b). Because the posterior distributions are
constructed from samples, they are imprecise due to sam-
pling error. Consequently, when computing moments of the
posterior distributions, such as their means, error in the es-
timates can be attributed not only to the standard error of

the point estimate (as reflected by the standard deviation
of the posterior), but also to sampling error, referred to as
Monte Carlo error. As a rule of thumb, the simulation should
be run until the Monte Carlo error for each parameter of
interest is less than about 5% of the sample standard devia-
tion (Spiegelhalter et al., 2003). The Monte Carlo error can
always be reduced by lengthening the chain. More on the dis-
tinction between these two forms of error will be described
in the real data example.

Evaluating model fit
Because of the emphasis in Bayesian inference on poste-
rior distributions as opposed to point estimates of model
parameters, MCMC methods are also generally associated
with different procedures for evaluating model fit than when
using ML methods. One general strategy involves the use of
posterior predictive checks. Sinharay (2005) and Sinharay,
Johnson, and Stern (2006) provide good illustrations of ways
in which posterior predictive checks can be used with item
response models. A posterior predictive distribution refers
to the distribution for a replicate set of observations (e.g., a
new item response data set) conditional on the distribution
of model parameters given the observed data. Such replicate
observations can be easily generated within WINBUGS even
in the process of estimating the model parameters. From
these generated replicate observations, a discrepancy statis-
tic is chosen that can be evaluated both for the observed item
response data as well as each of the replicate data sets. The
discrepancy statistic for the actual data is compared against
the distribution of discrepancy statistics across the replicate
data sets to evaluate model fit. For example, if the discrep-
ancy statistic for the real data exceeds (in magnitude) a
large percentage of the discrepancy statistics observed for
the replicated datasets (say 95%), the model is said not to
fit (at α = .05). Different types of deviance statistics can be
chosen depending on the aspect of model misfit of greatest
concern. For example, if local dependence among item pairs
is of concern, a deviance statistic such as an item-pair odds
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ratio can be used to identify item pairs that fail to satisfy this
condition. Other deviance statistics might attend to features
of the test score distribution, or item proportion correction
statistics. We consider an application of posterior predictive
checks using odds ratios in a real data example introduced
shortly.

Model comparison
Beyond studies of absolute model fit, other approaches can
be used for model comparison. Unlike statistical tests of
model fit, these criteria identify which of one or more models
provides a better fit to the data, without evaluating the de-
gree of fit in an absolute sense. We consider two possibilities,
the Pseudo-Bayes Factor criterion, and the Deviance Infor-
mation Criterion (DIC). To introduce the former index, it
is first necessary to define the Bayes factor, a fundamen-
tal concept for model comparison under Bayesian inference
(see Raftery, 1996). A Bayes Factor (BF) is an index for
comparing models that is defined as the ratio of the marginal
likelihoods of the data under each model. In other words,

BF = Likelihood(Data|Model1)
Likelihood(Data | Model2)

(4)

where the preferred model is the model returning the higher
likelihood. Based on (4), Model 1 is preferred when BF>1,
and Model 2 is preferred when BF<1. The relative magnitude
of BF also can be used in evaluating the relative weight of
evidence in support of either model, with BF >12 implying
strong evidence in favor of Model 1, and BF>150 implying
very strong evidence in favor of Model 1 (Jeffreys, 1961), for
example.

In practice, it is common to approximate this compari-
son using the conditional predictive ordinate (CPO), a so-
called pseudo-Bayes factor comparison (Geisser & Eddy,
1979; Gelfand, Dey & Chang, 1992). The CPO can be com-
puted at the level of an individual item response as

CPO−1 = 1
T

T∑
1

1/f(x |�t ) (5)

where T is the total number of sampled states in a chain,
and f(x | �t ) is the likelihood of the observed item response
(x = 0 or 1) based on the sampled parameter values at state
t.

In IRT modeling, a separate CPO index can be computed
for each item response. A summary of the index values
across item responses can be computed by taking the log
of the product of the CPOs. The preferred model is the
one returning the higher log product. In the WINBUGS
program, computation of the CPO is straightforward, as it
only requires tracing the inverse probability of each ob-
served item response over the MCMC sampled states, and
then tabulating the average of their logs when the chain is
finished.

A second index for model comparison is the Deviance
Information Criterion (DIC; Spiegelhalter, Best, Carlin &
van der Linde, 2002). The DIC is an index similar to the
Akaike Information Criterion (AIC; Akaike, 1973) and the
Bayesian Information Criterion (BIC; Schwartz, 1978) often
used under ML in that it weighs both model fit and model
complexity in identifying the preferred model. The DIC is

based on the posterior distribution of the deviance (i.e.,
−2 x log likelihood) and a term representing “the effective
number of parameters” that accounts for the expected de-
crease in deviance attributable to the added parameters of
the more complex model. Estimation of the DIC index can
be requested within the WINBUGS program. As with AIC and
BIC, the smaller the value of DIC, the better the model. For
an illustration of model fit comparison involving IRT models,
the reader is referred to Sahu (2002).

Practical Illustration: Fit of 2PL model to University
Math Placement Data using WINBUGS 1.4

To provide an example illustration of the above procedures,
we consider an item response dataset from a 36-item math-
ematics placement test. The test is administered each fall
to entering freshmen in the University of Wisconsin system
to assist with course placement decisions. All items are five
option multiple choice items. In this illustration we consider
the application of a two-parameter logistic model (2PL),
although other models, such as a three-parameter logistic
(3PL), may also be appropriate.

Under the 2PL, the probability of a correct response for
examinee i to item j is modeled as

Prob(Xij = 1) = exp[aj(θi−bj)]

1 + exp[aj(θi−bj)]
, (6)

where Xij denotes the item response (0 = incorrect; 1 =
correct), θ i is an examinee ability parameter, and item pa-
rameters a j indicate the item discrimination and b j the item
difficulty. A random sample of 1000 examinees was used for
estimation of the model. Consistent with common IRT prac-
tice, we focus here on the estimation of the item parameters,
where the ability parameters are viewed as nuisance param-
eters (Patz & Junker, 1999b). However, it is important to
note that ability parameters could also be estimated in a
similar fashion.

Specification of priors
To estimate the 2PL using MCMC, priors must first be spec-
ified for all item and person parameters. We assume θ i
∼Normal (0,1) for all persons i, and aj ∼LogNormal(0,.5)
and bj ∼Normal (0,2) for all items j. These are similar to
priors commonly used in BILOG. Less or more informative
priors and/or priors of different distributional forms could
naturally also have been chosen. Each item response is as-
sumed to be a Bernoulli outcome with probability of correct
response determined by the 2PL model and corresponding
person and item parameters.

Sampling procedure
As noted, the program WINBUGS has the potential to im-
plement several different sampling algorithms depending on
which method is most efficient for a given application. The
appendix displays WINBUGS code for the current analysis.
The model and priors selected are not conjugate priors and
thus do not lead to conditional distributions that would per-
mit direct Gibbs sampling. In addition, the characteristics
of the conditional distributions vary depending on the type
of parameter. Consequently, different forms of sampling will
be implemented for different parameter types. As normal
priors were assumed for both the ability (θ) and difficulty
(b) parameters, each of these parameter types results in a
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conditional distribution that is log concave, allowing WIN-
BUGS 1.4 program to implement an adaptive rejection sam-
pling (ARS) algorithm. (For details on this procedure, see
Gilks & Wild, 1992). However, the conditional distributions
for the item discrimination parameters (a) do not possess
this property. Nevertheless, a more efficient algorithm than
Metropolis Hastings is also available due to the restricted
range of values for these parameters (due to the log-normal
prior, they must always be positive). WINBUGS implements a
slice sampling algorithm in which observations are sampled
uniformly from the domain of its conditional probability den-
sity. Details of this procedure are provided by Neal (2003). It
should be noted that the selection of each of these algorithms
occurs through a process internal to WINBUGS, and so need
not be specified by the user.

Despite the use of different methods of sampling for dif-
ferent parameters in the model, both approaches seek to
produce chains that provide observations that reproduce the
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FIGURE 3. Chains for Discrimination and Difficulty Parameters, Items 1 and 2 of Math Placement Data.

joint posterior distribution of the model parameters. Conse-
quently, the general process by which the chain is monitored
and estimates determined is not affected by these different
sampling appraoches.

Monitoring the chain
Using a randomly generated starting state, A Markov chain
for the 2PL was run out to 10,000 states for five different
chains. Convergence was examined both through visual in-
spection of the sampling histories of the chains as well as
computation of convergence diagnostics. Figure 3 illustrates
the state histories for the discrimination and difficulty pa-
rameters of items 1 and 2 from chain 1, both of which appear
to display relatively quick convergence to a stationary dis-
tribution (Similar results were observed for the other items
and chains). Similarly, an overlay of the sampling histories of
parameters for the five chains (not shown here) further sup-
ported convergence, as between-chain variability relative to

Winter 2007 45



within-chain variability appeared minimal. Each chain took
approximately 3 hours to complete.

Further confirmation of convergence was obtained from
convergence diagnostics. The Geweke (1992) criterion re-
turned z-scores between ±2 for all but one of the discrim-
ination parameters (item 20: −2.03), and for the difficulty
parameters was always between ±2. Similarly, the Raftery
and Lewis (1992a) diagnostic returned I indices less than
5 for all discrimination and difficulty parameters, with a
maximum value of 3.16 for the difficulty parameters (Item
22), and a maximum value of 3.34 for the discrimination pa-
rameters (Item 10). Lastly, the Gelman and Rubin (1992)
criterion returned point estimates of

√
R̂ = 1.0 for each of

the 72 difficulty and discrimination parameters, suggesting
high similarity across chains. Overall, it therefore appears
there is good evidence for the convergence of the chain.

Inspecting posterior distributions
Based on the Raftery and Lewis diagnostics and autocorre-
lation estimates, a conservative burn-in of 500 was used for
all parameters. The Raftery and Lewis (1992b) diagnostic
returned a maximum burn-in recommendation of 21 (for the
a parameter of item 10), while the largest autocorrelation
for samples 10 states apart was.16 (for the b parameter of
item 36) and essentially 0 for all samples 50 states apart. Due
to the overall length of the chain, the use of 500 as burn-in,
although conservative, comes at little cost.

Figure 4 illustrates the resulting marginal posterior distri-
butions from the 10,000 iterations of chain 1 for the difficulty
and discrimination parameters of items 1 and 2. The uni-
modal, symmetric shape of the posteriors suggests that the
posterior mean likely provides a good point estimate of the
model parameters. The standard deviations of the marginal
posterior distributions provide standard errors for these esti-
mates. Table 2 shows the final estimates of model parameters
for the 36 items, as well as the corresponding ML estimates
computed using the program BILOG and the same priors.
The MCMC columns also provide an estimate of the Monte
Carlo error based on the number of iterations of each chain.
As can be seen from Table 1, the MCMC and MML estimates
are virtually identical across items. For a detailed review of
studies comparing ML versus MCMC-based point estimation
of IRT model parameters, see Rupp, Dey and Zumbo (2004).

Model fit and comparison
To examine issues related to model comparison and fit, a
posterior predictive check was applied using an odds ratio
(OR) discrepancy statistic. As noted earlier, such a statistic
permits inspection of local independence at the item pair
level. For a given pair of items, the index is defined as

OR = n11n00

n10n01
, (7)

where the “n”s denote the number of examinees obtaining a
given sequence of scores for a given item pair, and the sub-
scripts identify the pattern (e.g., n10 indicates the number
of examinees answering the first item in the pair correctly
and the second item incorrectly). As this test statistic is
defined for any item pair, there exist a total of 36×35/2 =
630 different OR statistics that can be studied using this
posterior predictive check. In the current analysis, 24 of
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FIGURE 4. Marginal Posterior Density for Item Discrimina-
tion and Difficulty Parameters, Items 1 and 2, Math Place-
ment Data

the statistics displayed a p-value less than .05, 15, of which
produce values more positive than expected. For example,
one such item pair was items 3 and 6, where the observed
OR = 2.52, while a 95% confidence interval (CI) based on
replicate data had lower and upper bounds of 1.36 and 2.44,
respectively. For items 16 and 20, the OR = 1.37, with 95%
CI = 1.38, 2.50. So overall in terms of local independence, the
fit of the 2PL seems to be reasonably good, with significant
pairs generally falling just outside the region of nonsignifi-
cance. As noted earlier, there are many other aspects of fit
that could be evaluated using different discrepancy statis-
tics.

To evaluate the 2PL in comparison to the one-parameter
logistic model (1PL), the 1PL model was also fit to the same
data, essentially following the same process used above in
estimating the 2PL. The 1PL models the probability of correct
response as

Prob(Xij = 1) = exp[a(θi−bj)]
1 + exp[a(θi−bj)]

, (8)

with the primary difference from the 2PL being the applica-
tion of a common discrimination parameter across all items.
In estimating the model, the same priors as for the 2PL were
imposed for the difficulty parameters and the one discrimi-
nation parameter.

As in the 2PL, an “a” parameter was estimated, but was
assumed equal across all items.
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Table 1. Markov Chain Monte Carlo (MCMC) and Marginal Maximum Likelihood
(MML) 2PL Model Parameter Estimates, Math Placement Data

MCMC Estimates MML Estimates

Item a se mcse b se mcse a se b se

1 .38 .07 .001 -.34 .19 .002 .41 .06 -.30 .16
2 1.60 .14 .002 .74 .07 .001 1.57 .13 .75 .07
3 .88 .10 .002 -.62 .10 .002 .87 .09 -.61 .09
4 .54 .08 .001 .24 .13 .002 .56 .07 .23 .12
5 .40 .07 .001 1.16 .27 .006 .42 .07 1.09 .23
6 .92 .09 .001 .19 .08 .001 .92 .09 .20 .08
7 .99 .10 .002 .18 .08 .001 .98 .09 .19 .07
8 .70 .09 .001 -.31 .11 .001 .71 .08 -.29 .10
9 1.34 .12 .002 -.27 .06 .001 1.32 .12 -.26 .06

10 .52 .08 .002 2.11 .32 .009 .52 .08 2.10 .31
11 .89 .10 .003 1.94 .20 .005 .87 .10 1.97 .20
12 .72 .09 .002 1.05 .15 .003 .72 .08 1.06 .14
13 .73 .09 .001 -.71 .12 .002 .74 .09 -.69 .11
14 .94 .09 .001 .64 .10 .002 .93 .09 .65 .09
15 .97 .10 .001 .30 .08 .001 .97 .09 .31 .08
16 .66 .08 .001 .60 .13 .002 .67 .08 .59 .12
17 .46 .07 .001 -.34 .16 .002 .49 .07 -.31 .14
18 .81 .10 .003 2.07 .24 .007 .80 .09 2.07 .22
19 .60 .08 .001 .60 .14 .003 .61 .08 .59 .13
20 1.38 .12 .002 .38 .07 .001 1.36 .11 .40 .06
21 .53 .08 .002 1.68 .26 .007 .54 .07 1.65 .24
22 .59 .08 .002 1.54 .24 .006 .60 .08 1.52 .21
23 .90 .10 .002 -.99 .12 .002 .89 .10 -.98 .11
24 .51 .07 .001 .82 .18 .003 .53 .07 .80 .16
25 .69 .08 .002 1.10 .16 .003 .69 .08 1.10 .14
26 .82 .09 .001 .52 .10 .002 .82 .08 .53 .10
27 .96 .10 .002 .86 .11 .002 .95 .09 .87 .10
28 1.11 .10 .001 .29 .08 .001 1.10 .10 .30 .07
29 1.00 .10 .002 -.82 .10 .002 1.00 .10 -.81 .09
30 .73 .09 .001 .60 .12 .002 .74 .08 .60 .11
31 .95 .10 .002 1.17 .13 .002 .94 .09 1.18 .12
32 .86 .10 .002 1.66 .18 .004 .85 .09 1.68 .18
33 .75 .09 .001 -.42 .10 .002 .76 .08 −.40 .10
34 1.33 .12 .002 .16 .07 .001 1.31 .12 .17 .06
35 .70 .08 .001 .53 .12 .002 .71 .08 .53 .11
36 1.06 .10 .002 1.24 .12 .003 1.04 .10 1.25 .12

a = item discrimination estimate.
b = item difficulty estimate.
se = standard error.
mcse = Markov chain standard error.

Both the DIC and Pseudo-Bayes factor criteria were eval-
uated for the 2PL and 1PL. In both cases, the 2PL is shown to
be preferred to the 1PL. For the DIC index, the 2PL returned
DIC = 42,578 (the effective number of parameters, pD =
901) while the 1PL returned DIC = 42,921 (pD = 847). In
terms of the Pseudo-Bayes factor criterion, the 1PL returned
a log(CPO) = −21,463 across item responses, while the 2PL
returned a log(CPO) = −21,294. Consequently, the criteria
agree in the selection of the 2PL over the 1PL model for these
data.

Concluding Comments

Models such as the 2PL can usually be easily fit using MCMC
methods. As noted in the introduction, however, the MCMC

methodology perhaps finds its greatest appeal in its ability
to accommodate more complex IRT models for which ML-
based IRT estimation software (like BILOG) is unavailable.
Such applications often present new challenges, however; we
mention a couple of common problems from our experience.
One is the occurrence of sampling “traps.” A trap occurs
when a state in the chain is encountered from which the
possible domain from which a new state can be sampled is
so restricted that no eligible sample is produced, even after
a large number of attempts. The occurrence of a trap causes
WINBUGS to terminate, and often requires restarting the
chain from a new starting state. Other challenges are related
to the frequent need for stricter identifiability constraints
than are applied when using other estimation procedures.
For example, use of MCMC with multidimensional and/or
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mixture IRT models can lead to dimension/class “identity
switching” over the course of a simulated chain. Identity
switching refers to the situation where one dimension or
class comes to represent another, making the estimation of
dimension-specific parameters problematic. For example, in
a two-dimensional item response model, it can happen that at
some point in the chain, what was originally ability dimension
1 assumes the role of ability dimension 2, thus creating an
inconsistency in how the item discrimination values should
be interpreted over the course of the chain.

For these and other reasons, practitioners new to the
MCMC methodology may find it useful to experiment with
simple models in the context of MCMC before attempting
more complex ones. A “model-building” strategy that begins
with a simplified version of the IRT model of interest may,
where possible, provide a better starting point for implement-
ing MCMC procedures to ensure identifiability of individual
parameters. Readers are encouraged also to examine a vari-
ety of different MCMC applications, including those outside
of IRT, for a better understanding of the methodology, as well
as potential challenges in implementing MCMC. For exam-
ple, the uses of MCMC methods for de-convolving mixtures
(Robert, 1997) or in fitting hierarchical models (Clayton,
1997) have been frequently studied, and in ways that would
likely be informative for IRT models generalized to accom-
modate similar types of structure.

Finally, we note that while this paper has focused on the
WINBUGS software for estimating MCMC models, a variety of
different packages can also be used. Essentially any statisti-
cal software that can be used to simulate data from specified
distributions can be used. Patz and Junker (1999b) provide
code for implementing MCMC procedures with IRT models
using the program S-plus. Such applications often help con-
siderably in reducing the computational time in conducting
MCMC, but demand a little more in terms of programming
on the part of the user.

Self-test
1. Suppose that a drug screening test used to disqualify

riders in a long-distance bicycle race is 95% accurate in
detecting users of the illegal drug, and is 99% accurate in
detecting nonusers of the drug. Suppose it is further
known that 3% of the cyclists use the drug. Following
Bayes’ theorem, identify

(a) the prior distribution for use of the drug
(b) the posterior probability that a cyclist is actually

a user if the test is positive
(c) the posterior probability that a cyclist is not a

user if the test is negative

2. Which of the potential priors for the difficulty
parameters in an IRT model: N(−1, 1), N(−1, 20) or
N(−1,.2) would likely have the greatest influence
on the final item difficulty estimates?

3. True/False questions

(a) In MCMC estimation, the Markov chain for a
given parameter should eventually converge to
a single point value.

(b) A primary advantage of MCMC methods with IRT
models is that they are easier to implement than

ML methods, although generally take a long time
to run.

(c) The distributional form selected for the prior(s)
matters little in determining an appropriate
MCMC sampling algorithm.

(d) If an MCMC algorithm fails to converge for a
given model and data set, there must be some-
thing wrong with how the sampling procedure
was programmed.

(e) A fundamental difference between Bayesian
approaches (like MCMC) and frequentist ap-
proaches (like ML) to model estimation is the
emphasis in Bayesian estimation on estimating
posterior distributions rather than point esti-
mates of model parameters.

(f) It is possible to study different aspects of IRT
model fit through the use of different dis-
crepancy statistics using posterior predictive
checks.

(g) If after a single MCMC runs a second MCMC chain
were run using a different starting value and
produced a different sampling history than the
original chain, the original chain has not con-
verged.

4. In evaluating the fit of the 2PL model to his item response
data set, test practitioner Phil approximates the Bayes
factor for the 2PL versus 1PL to be 1340. Is Phil correct in
assuming that the 2PL therefore provides a close fit to
his item response data?

5. Suppose that after 1,000 iterations an MCMC run has
converged. If the number of MCMC iterations were then
increased by 100 times to 100,000, which should de-
crease, the Monte Carlo standard error (MCSE) or the
point estimate standard error (SE)? By how much is it
expected to decrease?

6. Suppose test practitioner Janet estimates a model using
MCMC and ML, and finds noticeable differences in the
final point estimates of the model despite having used
the same priors in both estimation runs. She rechecks the
MCMC algorithm, and is confident of convergence. What
might explain the difference in the results?

Answers to Self-Test
1. (a) Because the distribution is only defined over a do-

main of two events, the prior can be expressed as
P(user) =.03; P(nonuser) = .97.

(b) Using Bayes’ theorem, P(user | test = positive) =
. P(test = positive | user) P(user)/[P(test = positive

| user) P(user)+ P(test = positive | nonuser) -
P(nonuser)] = .95 ×.03 / (.95×.03 +.01×.97) =

.75
(c) Using Bayes theorem, P(nonuser | test = neg-

ative) = P(test = negative | nonuser)
P(nonuser)/[P(test=negative | user) P(user)+
P(test = negative | nonuser)−P(nonuser)] =
.99 ×.97 / (.05×.03 +.99×.97) >.99

2. The N(−1,.2) prior would have the strongest effect, as it
has the smallest variance. It would generally also pro-
duce parameter estimates with the smallest standard
errors.

3. (a) F, the chain should converge to a stationary dis-
tribution of values, not a single value.
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(b) T, many MCMC algorithms take only minutes to
program, but when used in practice can take
hours or more to run.

(c) F, the form of the prior defines characteristics
of the posterior that can often permit more
efficient MCMC sampling techniques.

(d) F, model misspecification and/or a lack of infor-
mation in the data could also be responsible.

(e) T, in MCMC we estimate marginal posterior dis-
tributions for the model parameters; in ML
we determine point estimates of the model
parameters.

(f) T, posterior predictive checks provide a very flex-
ible set of techniques for investigating any
form of misfit that can be captured by a dis-
crepancy statistic.

(g) F, the two chains should converge to a common
distribution, but their sampling histories will
likely be different.

4. No, the Bayes factor criterion, and approximations to it,
provide a criterion for model comparison, not the eval-
uation of model fit in an absolute sense. Phil would be
correct in claiming the 2PL provides a better relative
fit than the 1PL, but that does not necessarily mean
that the 2PL model provides a close fit to the data.

5. The Monte Carlo standard error (MCSE) should de-
crease, not the point estimate standard error (SE).
Only the MCSE is systematically affected by the
size of the sample (i.e., the number of MCMC itera-
tions). Because the MCSE reflects the standard error
of the sample mean, we can use the standard
error of the mean formula in approximating the ex-
pected reduction in the MCSE: σ /

√
1,000 =√

100 × σ/
√

100,000, implying a 10 times smaller
MCSE.

6. When point estimates are derived from an MCMC run,
they are generally based on a characteristic of the
posterior distributions of the model parameters,
often the posterior mean. The posterior mean may not be
the value producing the maximum likelihood, especially
when the posterior distribution is asymmetric. So the
estimates likely differ because they reflect different
characteristics of the posterior distributions.
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