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This module discusses the 1-, 2-, and 3-parameter logistic item re­
sponse theory models. Mathematicalformulas are given for each model, 
and comparisons among the three models are made. Figures are in­
cluded to illustrate the effects of changing the a, b, or c parameter, 
and a single data set is used to illustrate the effects of estimating 
parameter values (as opposed to the true parameter values) and to 
compare parameter esti'YYUJtes achieved though applying the d'ifferent 
models. The estimation procedure itself is discussed briefly. Discus­
sions of model assumptions, such as dimensionality and local inde­
pendence, can be found in many of the annotated references (e.g., 
Hambleton, 1988). 

Item response theory (IRT) attempts to model the relation­
ship between an unobserved variable, usually conceptualized 
as an examinee's ability, and the probability of the examinee 
correctly responding to any particular test item. Three cur­
rently used models are the 3-parameter logistic, the 2-para­
meter logistic, and the I-parameter logistic models. (The 
I-parameter model is referred to as the Rasch model.) These 
models all assume a single underlying ability-usually a con­
tinuous, unbounded variable designated as B-for examinees, 
but vary in the characteristics they ascribe to items. All three 
models have an item difficulty parameter (b), which is the 
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point of inflection on the ability (B) scale. For the I-parameter 
and 2-parameter models, this is the point on the ability (B) 
scale at which an examinee has a 50% probability of correctly 
answering an item. For the 3-parameter it~ll), this is the point 
at which the probability of correctly answering an item is 
(1 + c)/2, where c is a lower asymptote parameter (see the 
discussion that follows). Theoretically, difficulty values can 
range from - 00 to + 00; in practice, values usually are in the 
range of - 3 to + 3, when B is scaled to have a mean of 0 and 
standard deviation of 1.0. Similarly, examinee ability values 
can range from - 00 to + 00, but values in excess of ± 3 seldom 
are seen. Items with high values of b are hard items, with 
low-ability examinees having low probabilities of correctly 
responaing to the item. Items with low values of b are easy 
items, with most examinees, even those with low-ability 
values, having at least a moderate probability of answering 
the item correctly. 

The 3- and 2-parameter models also have a discrimination 
parameter (a) that allows items to differentially discriminate 
among examinees. Technically, a is defined as the slope of 
the item characteristic curve (ICC) at the point of inflection 
(see Baker, 1985, p. 21). The a parameter can range in value 
from - 00 to + 00, with typical values being ~ 2.0 for multiple­
choice items. The higher the a value, the more sharply 
the item discriminates between examinees at the point of 
inflection. 

The 3-parameter model also has a lower asymptote para­
meter (0), which is sometimes referred to as the pseudo chance 
parameter. This parameter allows for examinees, even ones 
with low ability, to have perhaps substantial probability of 
correctly answering even moderate or hard items. 
Theoretically, 0 ranges from 0.0 to 1.0, but is typically < 0.3. 

Each of the models uses a logistic function to relate ex­
aminee ability and the item parameter(s) to the probability 
of correctly responding to an item. For each item, an item 
characteristic curve can be constructed that plots the proba­
bility of correctly responding to an item, given the , level. 
This relation generally will be nonlinear, as the, variable is 
unbounded and probability is bounded. Examples of item 
characteristic curves for each of the three logistic models are 
shown in Figure 1. 
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(a) 3-parameter logistic model 

CD 

.a 
o .. 
Il. 

1.0-.----------------, 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 +----..--.----.--.--r----.-.----..-,---\ 
-2.5-2.0-1.5-1 .0-0 .50.0 0.5 1.0 1.5 2.0 2 .5 

9 Scale 

(b) 2-parameter logistic model 
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(c) 1-parameter logistic model 

FIGURE 1. Examples of item characteristic curves derived 
from the 3-, 2- and 1-parameter logistic models 
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Define the three parameters used to describe items in the 
1-, 2-, and 3-parameter models. 

The 3-Parameter Model 

The 3-parameter model is defined mathematically as: 

(1 - c) 
pre) = c + ' 

1 + exp [-1.7a(e - b)] (1) 

where a, b, and c are as defined above. 
The effects of varying different parameters in a 3-para­

meter logistic model are illustrated in Figures 2 through 4. 
In Figure 2, the three item characteristic curves plotted vary 
only in their a (discrimination) parameter. Notice that the 
higher the value of a, the steeper the curve, thus the more 
sharply the item discriminates between examinees. When a 
is higher, however, the item discriminates over a smaller 
range of es. A test constructer would need to decide whether 
items that sharply discriminate over a narrow range or items 
that are less discriminating but operate over a broader range 
are more desirable for a particular purpose. 

Figure 3 shows three item characteristic curves that vary 
only in the b parameter. Notice that because the a parameter 
is constant, the discrimination power is constant. However, 
the point on the ability scale where the item discriminates 
best varies . 

In Figure 4, the c parameter varies from 0.0 to .25 with 
a and b held constant. Notice that the lower tails of the three 
item characteristic curves differ. 

Table 1 shows item response data (coded 0 = incorrect; 
1 = correct) for 10 examinees and 14 items. Using the full 
data set of 3000 examinees, from which the 10 examinees 
in Table 1 were extracted, the item characteristic curve in 
Figure 5 was constructed for one of the items, using a 3-para­
meter logistic model. Based on the item response data alone, 
would it be possible to identify which item was used in Fig­
ure 57 Probably not; however, knowing the a, b, and c para­
meter values for each of the items would allow one to iden­
tify the item used. 

The 14 items in Table 1 have the following parameter 
values: 

Item a b c 

1 1.36 -1.34 .20 
2 .88 .05 .20 
3 .64 .28 .12 
4 1.60 .98 .12 
5 1.36 .28 .05 
6 .64 - .88 .20 
7 .88 .28 .05 
8 1.12 .75 .12 
9 1.60 .52 .27 

10 1.36 1.21 .05 
11 1.12 1.21 .12 
12 1.12 .05 .27 
13 .64 .75 .05 
14 .64 .05 .20 

Educational Measurement: Issues and Practice 
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Using this information, try to determine what item's char­
acteristic curve is plotted in Figure 5. 

Noting that the point of inflection (b) is slightly greater than 
+ 1.00, that the lower asymptote (c) is slightly above .10, and 
that the slope at the point of inflection is rather steep, one 
could deduce that item 11 is the one plotted. The item char­
acteristic curve was constructed by inserting the given para­
meter values into Equation 1 for various e values. To illu­
strate, for e = 1.0: 

(1.00 - .12) 
P(1.0) = .12 + = .47319, 

1.00 + exp [ -1.7(1.12X1.00 - 1.21)] 

which is the value plotted against e = 1.0 in Figure 5. Similar 
calculations were done for other values of e. 

The item characteristic curve shows the probability of re­
sponding correctly to an item for any given e level. For item 
11, the probability of an examinee with e = 1.0 correctly 
responding is .47. This means that (a) on average, in a group 
of 100 examinees with 8s equal to 1.0, 47 will correctly re­
spond to item 11, or (b) a given examinee with 8 = 1.0, when 
presented with 100 items similar to item 11, will answer cor­
rectly, on average, 47% of the items. 

The 10 examinees used in Table 1 have 8 values of - .05, 
.85, - .45, -1.50, 1.95, .51, .64, - .57, - .21, and - .47, respec­
tively. Note that although examinee CC has a higher ethan 
examinee JJ, examinee JJ had a higher raw score. Although 
the e level indicates the "amount of ability'~ an examinee has, 
it does not "predict" the examinee's test score without er­
ror. To illustrate how this can be, consider the probabilities 
of correctly answering a given item. The probability of an 
examinee with a 8 of - .47 answering item 3 correctly is 
.38779; the probability of an examinee with a e of -.45 cor­
rectly answering item 3 is .39186, and the probability of an 
examinee with a e of .64 correctly answering item 3 is .64278. 
In this data set, however, examinee JJ (with a 8 of - .47) 
responded correctly to item 3 whereas examinee CC (8 = 

- .45) and examinee GG (8 = .64) responded incorrectly. The 
data set in Table 1 was generated using known 8 values. 
Results can be more anomalous when estimated ability values 
(e's) are used instead of E's. 

The 2-Pararneter Model 

The 2-parameter logistic model is mathematically specified 
as: 

pre) = 1 
1 + exp [-1.7a(8 - b)] (2) 

Note that if c was set equal to zero in Equation 1, Equation 
2 would result. Setting the c parameter to zero implies that 
an examinee of sufficiently low ability could have near zero 
probability of correctly responding to an item, which might 
be the case with supply rather than selection items. 

Although the 2-parameter model is less general than the 
3-parameter, in that it does not allow the lower asymptote 
to vary, the 2-parameter model sometimes is preferred be­
cause of the difficulties in estimating the c parameter in real 
data sets. Unlike the 3-parameter model, sufficient statistics 
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FIGURE 2. ICCs derived by varying the a parameter in a 
3-parameter logistic model 
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FIGURE 3. ICCs derived by varying the b parameter in a 
3-parameter logistic model 
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FIGURE 4. ICCs derived by varying the c parameter in a 
3-parameter logistic model 
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TABLE 1 

Item Responses for 1 0 Examinees to·14 Items 

Total raw 

Examinee 2 3 4 5 6 7 8 9 10 11 12 13 14 score 

AA 0 0 0 0 0 0 0 7 
BB 1 1 0 1 0 0 0 10 
CC 0 0 0 0 0 0 0 0 0 5 
DD 0 1 0 0 0 0 0 0 0 0 0 0 3 
EE 1 1 1 1 14 
FF 0 0 0 0 0 1 9 
GG 1 1 0 0 1 0 0 0 0 0 0 6 
HH 1 0 0 0 0 0 0 0 0 0 0 4 
II 0 0 0 0 1 0 0 0 0 0 0 1 4 

JJ 1 0 0 0 0 0 0 0 7 

do exist for calculating the parameters with the two para-
meter model. 

The I-Parameter Model 

The I-parameter model is mathematically specified as: 

pre) = 1 
1 + exp [ - 1. 7 a(e - b)], (3) 

where a is constant for all items (and is often scaled to equal 
one). Having a constant implies that all items on a test are 
equally discriminating. The items, however, may discriminate 
at different places on the ability scale; easy items discriminate 
among low-ability students as well as hard items discriminate 
among high-ability students. 

The I-parameter model has some advantages over the 2-
and 3-parameter models: the total test score (with number 
right scoring) is a sufficient statistic for estimating e, and 
the number of examinees correctly responding to an item is 
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FIGURE 5. Item characteristic curve for an item from 

Table 1 
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a sufficient statistic for estimating b. Thus, the model fits 
nicely with number-right scoring. Also, examinees with the · 
same raw score will have the same e; which is not the case 
with the 2- and 3-parameter models. 

Here, again, a choice must be made between generality 
(which parameters are allowed to vary) and simplicity. Al­
though few, if any, tests meet the strict assumption of equal 
discrimination across items, the I-parameter logistic model 
has found utility in a number of settings. 

Describe the major differences between the 1-, 2-, and 3-
parameter models. 

Estimation Procedures 

In the discussion thus far, item parameters have been pre­
sented as known; in actual applications, both the item para­
meter(s) and the examinee parameters (es) must be estimated 
using the examinees' responses to the items. In practical ap­
plications, these parameters are estimated by computer pro­
grams because of the vast number of par;;tmeters that must 
be estimated (1, 2, or 3 parameters for each item and 1 para­
meter for each examinee)'. 

One popular estimation program is LOGIST (Wingersky, 
Barton, & Lord, 1982). LOGIST uses joint maximum likeli­
hood procedures to estimate item and examinee parameters. 
It can be adapted to provide estimates for the 1-, 2-, and 
3-parameter models. The item data are coded correct, incor­
rect, omitted, or not reached, and a Newton-Raphson iterative 
proced1ITe is used. The particular values of a, b, and e para­
meters will depend on the specific scale unit and origin 
chosen. LOGIST sets some restrictions on the ranges of a, 
e, and e parameters and scales e so that the mean and stan­
dard deviation (over a truncated range) will equal zero and 
one, respectively. The scaling of e also sets the scale for the 
as and bs; es are "scale free." This scaling is for each par­
ticular examinee group; parameters must be put on the same 
scale before comparing es or item parameters from different 
computer runs (see Hambleton & Swaminathan, 1985, Chap­
ter 10). 

Estimation is a four stage procedure: (a) the es and bs are 
estimated, then (b) as, bs, and es, then (c) es and bs, and (d), 
in the final stage, the as, bs, and cs are estimated while the 
11"s are held fixed. This iterative procedure continues until a 
convergence criterion is reached. LOGIST cannot provide 
parameter estimates for exammees WIth U or perfect scores, 
or for items that all examinees or no examinees answered 
correctly. This is true for estimation with any of the three 
models. (See the users manual or Wingersky in Hambleton, 
1983, Chapter 3 for more detail on how LOGIST works.) 

Accuracy of parameter estimation depends on a number 
of factors, including the model chosen, the number of item 
parameters to be estimated (one, two, or three times the 
number of items), the dimensionality of the data, and the 
number of items and examinees included in the data set. 
According to Wingerskey (cited in Hambleton, 1983, Chapter 
3), large numbers of examinees and items (on the order of 
1000 or more examinees and 40 or more items) should be used 
when running LOGIST. 

Educational Measurement: Issues and Practice 
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Table 2 shows the results for the 14 items in Table 1 ob­
tained by applying LOGIST to the full data set from which 
the items in Table 1 were drawn. Table 2 (3-parameter model) 
shows the results from estimating using the 3-parameter 
model, Table 2 (2-parameter model) shows the results with 
the cs fixed at zero, and Table 2 (I-parameter model) shows 
the results with the cs fixed at zero and the a values con­
strained to be equal. Note that the values of the parameters 
are not directly comparable. Look at the values for item 11; 
these values were used to plot the three item characteristic 
curves in Figure 1. 

A more recent estimation program, which is gaining in pop­
ularity, is BILOG (Mislevy & Bock, 1984). Like LOGIST, 
BILOG can handle 1-, 2-, or 3-parameter logistic model esti­
mation. BILOG uses a marginal maximum likelihood solu­
tion instead of a joint maximum likelihood solution. Another 
estimation program, BICAL, was developed solely for use 
with the Rasch model and is the most popular I-parameter 
estimation program (see Wright & Stone, 1979). Other 
estimation programs also exist (see Hambleton, 1988, 
pp.I71-I72). 

Comparing and Evaluating the Models 

All three of the logistic models discussed in this module 
assume a single undirhensional trait underlies the data, an 
assumption seldom, if ever, met in realistic testing situations. 

The 1-, 2-, and 3-parameter models differ, however, in the 
number of parameters they allow to vary. The results ob­
tained, therefore, differ when different models are applied 
to the same data set. When specifying the model to use, one 
should select the most stringent model that accurately repre­
sents the observed data. Trade-offs will be employed; for ex­
ample, one might chose to use the I-parameter model instead 
of the 3-parameter model with multiple-choice items because 
of a belief that the a and c parameters are inestimable or 
because of the small size of the data set. (LOGIST requires 
a minimum of approximately 1,000 examinees, BICAL about 
200; see Lord cited in Weiss, 1983, Chapter 3.) 

Several statistical methods of assessing model fit exist (see, 
e.g., Hambleton, 1983, 1988; Hambleton & Swaminathan, 
1985; Weiss, 1983). One way to examine closeness of fit is 
to plot the empirical item characteristic curve along with the 
item characteristic curve based on the parameters estimated 
by the model. In Figure 6, the empirical curve shows the pro­
portion of examinees at a given e level who correctly re­
sponded to an item (item 11). (As only 3,000 examinees were 
used, the examinees were grouped in clusters by e levels.) 
This empirical curve is based on the Bs estimated using the 
item data for the full data set from which Table 1 was ex­
tracted. The item characteristic curve plotted as fitted model 
is based on the parameters estimated by LOGIST and Equa­
tion 1. To illustrate the difference between the two ICCs, at 
e = 1.0, the 3-parameter model estimated over 60% of the 
examinees would respond correctly to this particular item; 
in the empirical data set, about 45% responded correctly. (As 
the empirical values plotted are based on grouped data, the 
curve is less smooth.) 

Whether the two curves plotted in Figure 6 are "close 
enough" depends on the proposed uses of the data, on one's 
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TABLE 2 

Parameter Values for the 3-, 2-, and 1-Parameter Model, 
Estimated By LOCIST 

Item a b c 

3-parameter model 

0.57406 -3.89999 0.20000 
2 0.98104 0.05357 0.20239 
3 0.80290 0.53538 0.20170 
4 2.00000 1.02488 0.13925 
5 1.88064 0.24104 0.06373 
6 0.83238 -0.94186 0.20000 
7 1.01489 0.30096 0.11307 
8 1.40447 0.70978 0.11668 
9 2.00000 0.39435 0.25016 

10 1.71870 1.20411 0.05735 
11 1.24899 1.20410 0.13485 
12 1.20052 -0.11295 023493 
13 0.65106 0.95981 0.10245 
14 0.78457 0.02969 0.24493 

2-parameter model 

1.62047 -1.40369 0.00000 
2 0.76428 -0.29026 0.00000 
3 0.57242 0.10884 0.00000 
4 0.71455 0.97878 0.00000 
5 1.45481 0.14637 0.00000 
6 0.63411 -1.26397 0.00000 
7 0.83281 0.13320 0.00000 
8 0.83815 0.57449 0.00000 
9 0.84634 -0.05871 0.00000 

10 0.90201 1.35452 0.00000 
11 0.57959 1.18111 0.00000 
12 0.86585 -0.48998 0.00000 
13 0.52942 0.80035 0.00000 
14 0.62104 -0.44357 0.00000 

1-parameter model 

0.77511 -1.99799 0.00000 
2 0.77511 -0.28197 0.00000 
3 0.77511 0.08073 0.00000 
4 0.77511 0.93325 0.00000 
5 0.77511 0.25413 0.00000 
6 0.77511 -1 .1 1318 0.00000 
7 0.77511 0.15080 0.00000 
8 0.77511 0.61148 0.00000 
9 0.77511 -0.04868 0.00000 

10 0.77511 1.47616 0.00000 
11 0.77511 0.97321 0.00000 
12 0.77511 -0.50946 0.00000 
13 0.77511 0.61148 0.00000 
14 0.77511 -0.38995 0.00000 

views of robustness, and on issues such as the size of the data 
set used (smaller samples have less precision). For example, 
establishing an equating chain for a national test may require 
more accuracy than analyzing a classroom test. 

The ICCs in Figure 6, which are based on LOGIST esti­
mates, can be compared with the ICC in Figure 5, which is 
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FIGURE 6. The empirical and estimated 3-parameter model item 
characteristic curves for item 11 

based on the generated data. To compare actual parameter 
values, the values would need to be placed on the same scale. 
Note that it is conceivable that item characteristic curves may 
diverge in, for example, the tails, but be sufficiently similar 
in the range of B values of interest, thus still be useful. Recall, 
however, that in practice, parameter values will not be 
available, and only the parameter estimates and empirical 
data comparisons will be possible. More sophisticated 
methods for examining model fit exist, but to date no method 
has been found to be entirely satisfactory. 

If one is not satisfied with the data model fit, a different 
model can be employed or particular examinees or items that 
clearly do not fit may be deleted (to improve the fit). In some 
instances, such as when an examinee takes a test at an inap­
propriate level, this latter option may be desirable; in other 
instances, philosophical questions, such as whether the sta­
tistical model should dictate which items are included on a 
test, may arise. 

Summary 

The 3-, 2-, and I-parameter models were presented and 
compared. Parameter estimation and model fit were dis­
cussed briefly. Before using a model, one needs to evaluate 
whether the 1-, 2-, or 3-parameter model, all three models, 
or none of the models adequately fit the data. 

Self-Test 
1. a. Compute P(B) for the following two 2-parameter items 

for B = -2, -1,0, +1, +2. 

40 

Item 1. a = .75 b = .75 
Item II. a =.43 b = .80 

b. Sketch the item characteristic curve for each of the 
items. 

c. Which item is most discriminating for B = O? 
d. Which item is most difficult for B = -l? 
e. Considering only the five B values listed above, the re­

sponse pattern 01 would most likely come from an ex­
aminee with which B value? 

2. Is the following statement true: "As the 3-parameter 
model is more general than the 2- or 1- parameter models, 
it should always be the model of choice." Explain why or 
why not? 

3. Which of the following items would best distinguish be­
tween examinees with B values above and below .66? 
(Assume all other factors such as content appropriateness, 
were held equivalent.) Why? 

I. a = 1.12 b = .65 c = .12 
II. a = .80 b = .67 c = .12 

4. The I-parameter model assumes all items within a test 
have equal discrimination. When is it "sensible" to con­
sider using this model instead of 2- or 3-parameter models? 

Answers to Self-Test 
1. a. For item I, P(B) = .03, .10, .28, .58, and .83; for Item 

II, P(B) = .11, .21, .36, .54, and .71. 
b. 1.0 ' . 
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~/ 

0.7 ~/// 
- 0.6 ,.-~ CD ~ 

.a 0.5 
~ 

0 .. /. 
0... 0.4 ,,;' 

0.3 ~ 

/' 
./ 

0.2 
,,~ 

..... / 
0.1 -----0.0 

-2.5-2 .0-1.5-1.0-0.50 .0 0.5 1.0 1.5 2.0 2.5 

e Scale 

c. Item I 
d. Item I 
e. The probability of incorrectly answering an item is 1 

- P(B). Therefore, the probability of the item response 
vector 01 is (1 - P(B)) for item I multiplied by P(B) for 
item II. This becomes approximately .11, .19, .26, .23, 
and .12 for the five values, respectively. It is seen that 
the value with the highest probability of an item re­
sponse vector of 01 is B = O. This exercise is a much 
simplified illustration of obtaining a e: In practice, an 
iterative procedure is used to obtain es. (See, for ex­
ample, Baker, 1985.) 

2. No; for example, because estimating too many parameters 
may lessen the accuracy of the parameter estimates. 

3. Item I is preferable because it is more highly discriminat­
ing in the range of interest. 

4. When the data set is too small to use a 2- or 3-parameter 
model; when computer programs for estimating the 2- and 
3-parameter models are not available; when the test has 
been constructed to meet the I-parameter assumptions. 
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Annotated References 

Andrich, D. (1988). Rasch models for measurement. Beverly Hills, 
CA: Sage. 
An introduction to Rasch modeling for social science measurement, 

including a comparison with Guttman and Thurstone scaling. 
Baker, F. B. (1985). The basics of item response theory. Portsmouth, 

NH: Heinemann Educational Books. 
Accompanied by an IBM or Apple disk. Covers models, estima­

tion, and fit; minimal math requirement; user friendly exercises, in­
cluding graphing the item characteristic curves of 1-, 2-, and 3 para­
meter models. A good hands-on introduction to IRT. 
Hambleton, R. K (Ed.). (1983). Applications of item response theory. 

Vancouver: Educational Research Institute of British Columbia. 
Includes chapters on parameter estimation, choosing a model, 

model-data fit, and LOGIST. 
Hambleton, R. K, & Swaminathan, H. (1985). Item response theory: 

Principals and applications. Boston: Kluwer-Nijhoff. 
A good overview of IRT, requiring some mathematical background. 

Includes chapters on estimating parameters and on model-data fit. 
Hambleton, R. K (1988). Principles and selected applications of item 

response theory. In R. L. Linn (Ed.) Educational measurement, 
(3rd ed., pp. 147-200). New York: Macmillan. 
Well-written introduction to IRT, including discussions of assump­

tions, different IRT models, testing model fit, and applications. 
Lord, F. M. (1980). Applications of item response theory to practical 

testing problems. Hillsd~le, NJ: Erlbaum. 
Somewhat mathematical and theoretical, but readable. Discusses 

item characteristic curves, models, and parameter estimation. 
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental 

test scores. Reading, MA: Addison-Wesley. 
Chapters 16-20 present a mathematically sophisticated treatment 

of IRT, including Allan Birnbaum's introduction of logistic response 
models. 
Mislevy, R. J., & Bock, R. D. (1984). BILOG I (Version 2.2). Moores­

ville, IN: Scientific Software. 
Users manual for BILOG, a marginal maximum likelihood logistic 

model estimation program. 
Warm, T. A. (1978). A primer of item response theory (Tech. Rep. 

No. 941078). Oklahoma City, OK: U.S. Coast Guard Institute. 
An introductory text that utilizes a nonmathematical approach to 

the fundamentals of IRT; quite readable for a novice. 
Weiss, D. J. (Ed.). (1983). New horizons in testing: Latent trait theory 

and computerized adaptive testing. New York: Academic Press. 
Sections on parameter estimating, including robustness and person­

to-model fit. Mathematical demands vary. 
Wingersky, M. S., Barton, M. A., & Lord, F. M. (1982). LOGIST 

5 (Version 1.0). Princeton, NJ: Educational Testing Service. 
A joint maximum likelihood logistic model estimation program. 

Wright, B. D., & Stone, M. H. (1979). Best test design: Rasch measure­
ment. Chicago, IL: MESA. 
Concentrates on the Rasch model; includes example of item calibra­

tion by hand, model fit, and discussion of BICAL. 

Teaching Aids Are Available 

A set of teaching aids, designed by Deborah Harris 
to complement her ITEMS module, "Comparison of 1-, 
2-, and 3-Parameter IRT Models," is available at cost 
from NCME. These teaching aids contain a set of item 
responses for 200 people to 14 items, along with the 
a, b, and c parameters and the e values. As long as they 
are available, they can be obtained by sending $2.00 
to: Teaching Aids, ITEMS Module #7, NCME, 1230 
17th St., NW, Washington, DC 20036. 
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Measurement Series (ITEMS) 

About ITEMS 
The purpose of the Instructional Topics in Educational Mea­

surement Series (ITEMS) is to improve the understanding 
of educational measurement principles. These materials are 
designed for use by college faculty and students as well as 
by workshop leaders and participants. 

This series is the outcome of an NCME Task Force estab­
lished in 1985 in response to a perceived need for materials 
to improve the communication and understanding of educa­
tional measurement principles. The committee is chaired by 
Al Oosterhof, Florida State University. Other members of 
the committee are Fred Brown, Iowa State University; Jason 
Millman, Cornell University; and Barbara S. Plake, Univer­
sity of Nebraska. 

Topics for the series were identified from the results of a 
survey of a random sample of NCME mem~ers. Authors were 
selected from persons either responding to a call for authors 
that appeared in Educational Measurement: Issues and Prac­
tice or through individual contacts by the committee mem­
bers. Currently, 17 authors are involved in developing mod­
ules. EM was selected as the dissemination vehicle for the 
ITEMS modules. Modules will appear, in a serial fashion, in 
future issues of EM. Barbara S. Plake is serving as editor 
of the series. 

Each instructional unit consists of two parts, (1) instructional 
module" and (2) teaching aids. The instructional modules, 
which will appear in EM, are designed to be learner-oriented. 
Each module consists of an abstract, tutorial content, a set 
of exercises including a self-test, and annotated references. 
The instructional modules are designed to be homogeneous 
in structure and length. The teaching aids, available at cost 
from NCME, are designed to complement the instructional 
modules in teaching and/or workshop settings. These aids will 
consist of tips for teaching, figures or masters from which 
instructors can produce transparencies, group demonstra­
tions, additional annotated references, and/ or test items sup­
plementing those included within the learner's instructional 
unit. The instructional module and teaching aids for an in­
structional unit are developed by the same author. 

To maximize the availability and usefulness of the ITEMS 
materials, permission is hereby granted to make multiple pho­
tocopies of ITEMS materials for instructional purposes. The 
publication format of ITEMS in EM was specifically chosen 
with ease of photocopying in mind, as the modules appear 
in consecutive, text-dedicated pages. 

The expectation of the Task Force, the editors of EM, and 
NCME is that these modules will be useful in a variety of 
educational settings. In cooperation with the authors in the 
series and ad hoc reviewers for the series, this team brings 
this new series to the NCME readership. If the efforts and 
enthusiasm of the persons involved in developing, reviewing, 
and publishing the ITEMS materials is an indication, the 
series should make a vital contribution to the educational 
measurement training literature. 
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