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Structural equation modeling (SEM) is a versatile statistical modeling tool. Its estimation
techniques, modeling capacities, and breadth of applications are expanding rapidly. This module
introduces some common terminologies. General steps of SEM are discussed along with important
considerations in each step. Simple examples are provided to illustrate some of the ideas for
beginners. In addition, several popular specialized SEM software programs are briefly discussed
with regard to their features and availability. The intent of this module is to focus on foundational
issues to inform readers of the potentials as well as the limitations of SEM. Interested readers are
encouraged to consult additional references for advanced model types and more application
examples.
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Structural equation modeling (SEM) has gained popular-
ity across many disciplines in the past two decades due

perhaps to its generality and flexibility. As a statistical mod-
eling tool, its development and expansion are rapid and
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ongoing. With advances in estimation techniques, basic mod-
els, such as measurement models, path models, and their
integration into a general covariance structure SEM anal-
ysis framework have been expanded to include, but are by
no means limited to, the modeling of mean structures, in-
teraction or nonlinear relations, and multilevel problems.
The purpose of this module is to introduce the foundations
of SEM modeling with the basic covariance structure mod-
els to new SEM researchers. Readers are assumed to have
basic statistical knowledge in multiple regression and anal-
ysis of variance (ANOVA). References and other resources
on current developments of more sophisticated models are
provided for interested readers.

What is Structural Equation Modeling?
Structural equation modeling is a general term that has
been used to describe a large number of statistical models
used to evaluate the validity of substantive theories with
empirical data. Statistically, it represents an extension of
general linear modeling (GLM) procedures, such as the
ANOVA and multiple regression analysis. One of the pri-
mary advantages of SEM (vs. other applications of GLM)
is that it can be used to study the relationships among la-
tent constructs that are indicated by multiple measures. It is
also applicable to both experimental and non-experimental
data, as well as cross-sectional and longitudinal data. SEM
takes a confirmatory (hypothesis testing) approach to the
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multivariate analysis of a structural theory, one that stipu-
lates causal relations among multiple variables. The causal
pattern of intervariable relations within the theory is spec-
ified a priori. The goal is to determine whether a hypothe-
sized theoretical model is consistent with the data collected
to reflect this theory. The consistency is evaluated through
model-data fit, which indicates the extent to which the pos-
tulated network of relations among variables is plausible.
SEM is a large sample technique (usually N > 200; e.g.,
Kline, 2005, pp. 111, 178) and the sample size required is
somewhat dependent on model complexity, the estimation
method used, and the distributional characteristics of ob-
served variables (Kline, pp. 14–15). SEM has a number of
synonyms and special cases in the literature including path
analysis, causal modeling, and covariance structure analysis.
In simple terms, SEM involves the evaluation of two models:
a measurement model and a path model. They are described
below.

Path Model

Path analysis is an extension of multiple regression in that it
involves various multiple regression models or equations that
are estimated simultaneously. This provides a more effective
and direct way of modeling mediation, indirect effects, and
other complex relationship among variables. Path analysis
can be considered a special case of SEM in which structural
relations among observed (vs. latent) variables are modeled.
Structural relations are hypotheses about directional influ-
ences or causal relations of multiple variables (e.g., how
independent variables affect dependent variables). Hence,
path analysis (or the more generalized SEM) is sometimes
referred to as causal modeling. Because analyzing interrela-
tions among variables is a major part of SEM and these in-
terrelations are hypothesized to generate specific observed
covariance (or correlation) patterns among the variables,
SEM is also sometimes called covariance structure analysis.

In SEM, a variable can serve both as a source variable
(called an exogenous variable, which is analogous to an in-
dependent variable) and a result variable (called an endoge-
nous variable, which is analogous to a dependent variable)
in a chain of causal hypotheses. This kind of variable is
often called a mediator. As an example, suppose that fam-
ily environment has a direct impact on learning motivation
which, in turn, is hypothesized to affect achievement. In this
case motivation is a mediator between family environment
and achievement; it is the source variable for achievement
and the result variable for family environment. Furthermore,
feedback loops among variables (e.g., achievement can in
turn affect family environment in the example) are per-
missible in SEM, as are reciprocal effects (e.g., learning
motivation and achievement affect each other).1

In path analyses, observed variables are treated as if they
are measured without error, which is an assumption that
does not likely hold in most social and behavioral sciences.
When observed variables contain error, estimates of path co-
efficients may be biased in unpredictable ways, especially for
complex models (e.g., Bollen, 1989, p. 151–178). Estimates
of reliability for the measured variables, if available, can be
incorporated into the model to fix their error variances (e.g.,
squared standard error of measurement via classical test
theory). Alternatively, if multiple observed variables that
are supposed to measure the same latent constructs are

available, then a measurement model can be used to sepa-
rate the common variances of the observed variables from
their error variances thus correcting the coefficients in the
model for unreliability.2

Measurement Model

The measurement of latent variables originated from psy-
chometric theories. Unobserved latent variables cannot be
measured directly but are indicated or inferred by responses
to a number of observable variables (indicators). Latent
constructs such as intelligence or reading ability are often
gauged by responses to a battery of items that are designed
to tap those constructs. Responses of a study participant to
those items are supposed to reflect where the participant
stands on the latent variable. Statistical techniques, such
as factor analysis, exploratory or confirmatory, have been
widely used to examine the number of latent constructs un-
derlying the observed responses and to evaluate the adequacy
of individual items or variables as indicators for the latent
constructs they are supposed to measure.

The measurement model in SEM is evaluated through con-
firmatory factor analysis (CFA). CFA differs from exploratory
factor analysis (EFA) in that factor structures are hypoth-
esized a priori and verified empirically rather than derived
from the data. EFA often allows all indicators to load on all
factors and does not permit correlated residuals. Solutions
for different number of factors are often examined in EFA
and the most sensible solution is interpreted. In contrast,
the number of factors in CFA is assumed to be known. In
SEM, these factors correspond to the latent constructs rep-
resented in the model. CFA allows an indicator to load on
multiple factors (if it is believed to measure multiple latent
constructs). It also allows residuals or errors to correlate (if
these indicators are believed to have common causes other
than the latent factors included in the model). Once the mea-
surement model has been specified, structural relations of
the latent factors are then modeled essentially the same way
as they are in path models. The combination of CFA models
with structural path models on the latent constructs repre-
sents the general SEM framework in analyzing covariance
structures.

Other Models

Current developments in SEM include the modeling of mean
structures in addition to covariance structures, the modeling
of changes over time (growth models) and latent classes or
profiles, the modeling of data having nesting structures (e.g.,
students are nested within classes which, in turn, are nested
with schools; multilevel models), as well as the modeling of
nonlinear effects (e.g., interaction). Models can also be dif-
ferent for different groups or populations by analyzing multi-
ple sample-specific models simultaneously (multiple sample
analysis). Moreover, sampling weights can be incorporated
for complex survey sampling designs. See Marcoulides and
Schumacker (2001) and Marcoulides and Moustaki (2002)
for more detailed discussions of the new developments in
SEM.

How Does SEM Work?
In general, every SEM analysis goes through the steps of
model specification, data collection, model estimation, model
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evaluation, and (possibly) model modification. Issues per-
taining to each of these steps are discussed below.

Model Specification

A sound model is theory based. Theory is based on find-
ings in the literature, knowledge in the field, or one’s edu-
cated guesses, from which causes and effects among variables
within the theory are specified. Models are often easily con-
ceptualized and communicated in graphical forms. In these
graphical forms, a directional arrow (→) is universally used
to indicate a hypothesized causal direction. The variables
to which arrows are pointing are commonly termed endoge-
nous variables (or dependent variables) and the variables
having no arrows pointing to them are called exogenous vari-
ables (or independent variables). Unexplained covariances
among variables are indicated by curved arrows ( ). Ob-
served variables are commonly enclosed in rectangular boxes
and latent constructs are enclosed in circular or elliptical
shapes.

For example, suppose a group of researchers have devel-
oped a new measure to assess mathematics skills of preschool
children and would like to find out (a) whether the skill
scores measure a common construct called math ability and
(b) whether reading readiness (RR) has an influence on
math ability when age (measured in month) differences are
controlled for. The skill scores available are: counting aloud
(CA)—count aloud as high as possible beginning with the
number 1; measurement (M)—identify fundamental mea-
surement concepts (e.g., taller, shorter, higher, lower) using
basic shapes; counting objects (CO)—count sets of objects
and correctly identify the total number of objects in the
set; number naming (NN)—read individual numbers (or
shapes) in isolation and rapidly identify the specific num-
ber (shape) being viewed; and pattern recognition (PR)—
identify patterns using short sequences of basic shapes (i.e.,
circle, square, and triangle). These skill scores (indicators)
are hypothesized to indicate the strength of children’s la-
tent math ability, with higher scores signaling stronger math
ability. Figure 1 presents the conceptual model.

The model in Figure 1 suggests that the five skill scores
on the right are supposedly results of latent math ability
(enclosed by an oval) and that the two exogenous observed
variables on the left (RR and age enclosed by rectangles) are
predictors of math ability. The two predictors (connected by

) are allowed to be correlated but their relationship is not
explained in the model. The latent “math ability” variable and
the five observed skill scores (enclosed by rectangles) are
endogenous in this example. The residual of the latent en-
dogenous variable (residuals of structural equations are also
called disturbances) and the residuals (or errors) of the skill
variables are considered exogenous because their variances

RR

AGE

MATH

Structural part 

Measurement part

CO 

NN

M

CA 

PR

FIGURE 1. Conceptual model of math ability.

and interrelationships are unexplained in the model. The
residuals are indicated by arrows without sources in Figure 1.
The effects of RR and age on the five skill scores can also
be perceived to be mediated by the latent variable (math
ability). This model is an example of a multiple-indicator
multiple-cause model (or MIMIC for short, a special case of
general SEM model) in which the skill scores are the indi-
cators and age as well as RR are the causes for the latent
variable.

Due to the flexibility in model specification, a variety of
models can be conceived. However, not all specified models
can be identified and estimated. Just like solving equations in
algebra where there cannot be more unknowns than knowns,
a basic principle of identification is that a model cannot have
a larger number of unknown parameters to be estimated than
the number of unique pieces of information provided by the
data (variances and covariances of observed variables for co-
variance structure models in which mean structures are not
analyzed).3 Because the scale of a latent variable is arbitrary,
another basic principle of identification is that all latent vari-
ables must be scaled so that their values can be interpreted.
These two principles are necessary for identification but they
are not sufficient. The issue of model identification is com-
plex. Fortunately, there are some established rules that can
help researchers decide if a particular model of interest is
identified or not (e.g., Davis, 1993; Reilly & O’Brien, 1996;
Rigdon, 1995).

When a model is identified, every model parameter can be
uniquely estimated. A model is said to be over-identified if it
contains fewer parameters to be estimated than the number
of variances and covariances, just-identified when it contains
the same number of parameters as the number of variances
and covariances, and under-identified if the number of vari-
ances and covariances is less than the number of param-
eters. Parameter estimates of an over-identified model are
unique given a certain estimation criterion (e.g., maximum
likelihood). All just-identified models fit the data perfectly
and have a unique set of parameter estimates. However, a
perfect model-data fit is not necessarily desirable in SEM.
First, sample data contain random error and a perfect-fitting
model may be fitting sampling errors. Second, because con-
ceptually very different just-identified models produce the
same perfect empirical fit, the models cannot be evaluated
or compared by conventional means (model fit indices dis-
cussed below). When a model cannot be identified, either
some model parameters cannot be estimated or numerous
sets of parameter values can produce the same level of model
fit (as in under-identified models). In any event, results of
such models are not interpretable and the models require
re-specification.

Data Characteristics

Like conventional statistical techniques, score reliability and
validity should be considered in selecting measurement in-
struments for the constructs of interest and sample size
needs to be determined preferably based on power consider-
ations. The sample size required to provide unbiased param-
eter estimates and accurate model fit information for SEM
models depends on model characteristics, such as model
size as well as score characteristics of measured variables,
such as score scale and distribution. For example, larger
models require larger samples to provide stable parameter
estimates, and larger samples are required for categorical
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or non-normally distributed variables than for continuous
or normally distributed variables. Therefore, data collection
should come, if possible, after models of interest are specified
so that sample size can be determined a priori. Information
about variable distributions can be obtained based on a pilot
study or one’s educated guess.

SEM is a large sample technique. That is, model estimation
and statistical inference or hypothesis testing regarding the
specified model and individual parameters are appropriate
only if sample size is not too small for the estimation method
chosen. A general rule of thumb is that the minimum sample
size should be no less than 200 (preferably no less than 400
especially when observed variables are not multivariate nor-
mally distributed) or 5–20 times the number of parameters to
be estimated, whichever is larger (e.g., Kline, 2005, pp. 111,
178). Larger models often contain larger number of model
parameters and hence demand larger sample sizes. Sample
size for SEM analysis can also be determined based on a pri-
ori power considerations. There are different approaches to
power estimation in SEM (e.g., MacCallum, Browne, & Sug-
awara, 1996 on the root mean square error of approximation
(RMSEA) method; Satorra & Saris, 1985; Yung & Bentler,
1999 on bootstrapping; Muthén & Muthén, 2002 on Monte
Carlo simulation). However, an extended discussion of each
is beyond the scope of this module.

Model Estimation4

A properly specified structural equation model often has
some fixed parameters and some free parameters to be esti-
mated from the data. As an illustration, Figure 2 shows the
diagram of a conceptual model that predicts reading (READ)
and mathematics (MATH) latent ability from observed scores
from two intelligence scales, verbal comprehension (VC) and
perceptual organization (PO). The latent READ variable is
indicated by basic word reading (BW) and reading compre-
hension (RC) scores. The latent MATH variable is indicated
by calculation (CL) and reasoning (RE) scores. The visible
paths denoted by directional arrows (from VC and PO to
READ and MATH, from READ to BW and RC, and from MATH
to CL and RE) and curved arrows (between VC and PO, and
between residuals of READ and MATH) in the diagram are
free parameters of the model to be estimated, as are residual
variances of endogenous variables (READ, MATH, BW, RC,
CL, and RE) and variances of exogenous variables (VC and
PO). All other possible paths that are not shown (e.g., direct
paths from VC or PO to BW, RC, CL, or RE) are fixed to zero
and will not be estimated. As mentioned above, the scale of
a latent variable is arbitrary and has to be set. The scale of
a latent variable can be standardized by fixing its variance
to 1. Alternatively, a latent variable can take the scale of
one of its indicator variables by fixing the factor loading (the

VC 

   PO 

READ

BW 

  RC 

   CL 

RE

MATH

1

1

FIGURE 2. Conceptual model of math and reading.

value of the path from a latent variable to an indicator) of
one indicator to 1. In this example, the loading of BW on
READ and the loading of CL on MATH are fixed to 1 (i.e.,
they become fixed parameters). That is, when the parameter
value of a visible path is fixed to a constant, the parameter
is not estimated from the data.

Free parameters are estimated through iterative proce-
dures to minimize a certain discrepancy or fit function
between the observed covariance matrix (data) and the
model-implied covariance matrix (model). Definitions of the
discrepancy function depend on specific methods used to
estimate the model parameters. A commonly used normal
theory discrepancy function is derived from the maximum
likelihood method. This estimation method assumes that the
observed variables are multivariate normally distributed or
there is no excessive kurtosis (i.e., same kurtosis as the
normal distribution) of the variables (Bollen, 1989, p. 417).5

The estimation of a model may fail to converge or the so-
lutions provided may be improper. In the former case, SEM
software programs generally stop the estimation process and
issue an error message or warning. In the latter, parameter
estimates are provided but they are not interpretable because
some estimates are out of range (e.g., correlation greater
than 1, negative variance). These problems may result if a
model is ill specified (e.g., the model is not identified), the
data are problematic (e.g., sample size is too small, variables
are highly correlated, etc.), or both. Multicollinearity oc-
curs when some variables are linearly dependent or strongly
correlated (e.g., bivariate correlation > .85). It causes sim-
ilar estimation problems in SEM as in multiple regression.
Methods for detecting and solving multicollinearity prob-
lems established for multiple regression can also be applied
in SEM.

Model Evaluation

Once model parameters have been estimated, one would
like to make a dichotomous decision, either to retain or re-
ject the hypothesized model. This is essentially a statistical
hypothesis-testing problem, with the null hypothesis being
that the model under consideration fits the data. The over-
all model goodness of fit is reflected by the magnitude of
discrepancy between the sample covariance matrix and the
covariance matrix implied by the model with the parameter
estimates (also referred to as the minimum of the fit func-
tion or Fmin). Most measures of overall model goodness of
fit are functionally related to Fmin. The model test statistic
(N – 1)Fmin, where N is the sample size, has a chi-square
distribution (i.e., it is a chi-square test) when the model is
correctly specified and can be used to test the null hypothesis
that the model fits the data. Unfortunately, this test statis-
tic has been found to be extremely sensitive to sample size.
That is, the model may fit the data reasonably well but the
chi-square test may reject the model because of large sample
size.

In reaction to this sample size sensitivity problem, a vari-
ety of alternative goodness-of-fit indices have been developed
to supplement the chi-square statistic. All of these alterna-
tive indices attempt to adjust for the effect of sample size,
and many of them also take into account model degrees of
freedom, which is a proxy for model size. Two classes of al-
ternative fit indices, incremental and absolute, have been
identified (e.g., Bollen, 1989, p. 269; Hu & Bentler, 1999).
Incremental fit indices measure the increase in fit relative
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to a baseline model (often one in which all observed vari-
ables are uncorrelated). Examples of incremental fit indices
include normed fit index (NFI; Bentler & Bonett, 1980),
Tucker-Lewis index (TLI; Tucker & Lewis, 1973), relative
noncentrality index (RNI; McDonald & Marsh, 1990), and
comparative fit index (CFI; Bentler, 1989, 1990). Higher val-
ues of incremental fit indices indicate larger improvement
over the baseline model in fit. Values in the .90s (or more
recently ≥ .95) are generally accepted as indications of good
fit.

In contrast, absolute fit indices measure the extent to
which the specified model of interest reproduces the sample
covariance matrix. Examples of absolute fit indices include
Jöreskog and Sörbom’s (1986) goodness-of-fit index (GFI)
and adjusted GFI (AGFI), standardized root mean square
residual (SRMR; Bentler, 1995), and the RMSEA (Steiger &
Lind, 1980). Higher values of GFI and AGFI as well as lower
values of SRMR and RMSEA indicate better model-data fit.

SEM software programs routinely report a handful of
goodness-of-fit indices. Some of these indices work better
than others under certain conditions. It is generally recom-
mended that multiple indices be considered simultaneously
when overall model fit is evaluated. For instance, Hu and
Bentler (1999) proposed a 2-index strategy, that is, report-
ing SRMR along with one of the fit indices (e.g., RNI, CFI, or
RMSEA). The authors also suggested the following criteria
for an indication of good model-data fit using those indices:
RNI (or CFI) ≥ .95, SRMR ≤ .08, and RMSEA ≤ .06. De-
spite the sample size sensitivity problem with the chi-square
test, reporting the model chi-square value with its degrees of
freedom in addition to the other fit indices is recommended.

Because some solutions may be improper, it is prudent
for researchers to examine individual parameter estimates
as well as their estimated standard errors. Unreasonable
magnitude (e.g., correlation > 1) or direction (e.g., negative
variance) of parameter estimates or large standard error
estimates (relative to others that are on the same scale) are
some indications of possible improper solutions.

If a model fits the data well and the estimation solution
is deemed proper, individual parameter estimates can be in-
terpreted and examined for statistical significance (whether
they are significantly different from zero). The test of individ-
ual parameter estimates for statistical significance is based

Table 1. Sample Correlation, Mean, and Standard Deviation for the Model
of Figure 1

Variables

Variables AGE RR CA M CO NN PR

Age 1
RR .357 1
CA .382 .439 1
M .510 .405 .588 1
CO .439 .447 .512 .604 1
NN .513 .475 .591 .560 .606 1
PR .372 .328 .564 .531 .443 .561 1
Mean 50.340 .440 .666 .730 .545 .625 .624
SD 6.706 1.023 1.297 .855 .952 .933 1.196

Note: CA = counting aloud; M = measurement; CO = counting objects; NN = number naming; PR = pattern recognition; RR =
reading readiness; age is measured in months.

on the ratio of the parameter estimate to its standard error
estimate (often called z-value or t-value). As a rough refer-
ence, absolute value of this ratio greater than 1.96 may be
considered statistically significant at the .05 level. Although
the test is proper for unstandardized parameter estimates,
standardized estimates are often reported for ease of inter-
pretation. In growth models and multiple-sample analyses
in which different variances over time or across samples
may be of theoretical interest, unstandardized estimates are
preferred.

As an example, Table 1 presents the simple descriptive
statistics of the variables for the math ability example (Fig-
ure 1), and Table 2 provides the parameter estimates (stan-
dardized and unstandardized) and their standard error es-
timates. This model fit the sample data reasonably well as
indicated by the selected overall goodness-of-fit statistics:
χ 2

13 = 21.21, p = .069, RMSEA = .056 (<.06), CFI = .99
(>.95), SRMR = .032 (<.08). The model solution is con-
sidered proper because there are no out-of-range parameter
estimates and standard error estimates are of similar magni-
tude (see Table 2). All parameter estimates are considered
large (not likely zero) because the ratios formed by unstan-
dardized parameter estimates to their standard errors (i.e.,
z-values or t-values) are greater than |2| (Kline, 2005, p. 41).
Standardized factor loadings in measurement models should
fall between 0 and 1 with higher values suggesting better
indications of the observed variables for the latent variable.
All standardized loadings in this example are in the neigh-
borhood of .7, showing that they are satisfactory indicators
for the latent construct of math ability. Coefficients for the
structural paths are interpreted in the same way as regres-
sion coefficients. The standardized coefficient value of .46 for
the path from age to math ability suggests that as children
grow by one standard deviation of age in months (about 6.7
months), their math ability is expected to increase by .46
standard deviation holding RR constant. The standardized
value of .40 for the path from RR to math ability reveals that
for every standard deviation increase in RR, math ability
is expected to increase by .40 standard deviation, holding
age constant. The standardized residual variance of .50 for
the latent math variable indicates that approximately 50%
of variance in math is unexplained by age and RR. Simi-
larly, standardized residual or error variances of the math
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Table 2. Parameter and Standard Error Estimates for the Model of Figure 1

Standardized Unstandardized Standard
Model Parameters Estimate Estimate Error

Loadings/effects on MATH
CA .74 1.00a

M .77 .68 .07
CO .74 .73 .08
NN .80 .77 .08
PR .68 .84 .10
Age .46 .07 .01
RR .40 .38 .07

Residual variances
CA .45 .75 .10
M .41 .30 .04
CO .46 .41 .05
NN .36 .32 .05
PR .54 .78 .09
MATH .50 .46 .09

Covariance
RR and age .36 2.45 .56

Note: Table values are maximum likelihood estimates. CA = counting aloud; M = measurement; CO = counting objects; NN =
number naming; PR = pattern recognition; RR = reading readiness; age is measured in months.
aFixed parameter to set the scale of the latent variable.

indicator variables are taken as the percentages of their
variances unexplained by the latent variable.

Model Modification, Alternative Models,
and Equivalent Models

When the hypothesized model is rejected based on goodness-
of-fit statistics, SEM researchers are often interested in find-
ing an alternative model that fits the data. Post hoc modi-
fications (or model trimming) of the model are often aided
by modification indices, sometimes in conjunction with the
expected parameter change statistics. Modification index es-
timates the magnitude of decrease in model chi-square (for
1 degrees of freedom) whereas expected parameter change
approximates the expected size of change in the parameter
estimate when a certain fixed parameter is freely estimated.

Table 3. Sample Correlation, Mean, and Standard Deviation for the Model
of Figure 2

Variables

Variables VC PO BW RC CL RE

VC 1
PO .704 1
BW .536 .354 1
RC .682 .515 .781 1
CL .669 .585 .560 .657 1
RE .743 .618 .532 .688 .781 1

Mean 89.810 92.347 83.448 87.955 85.320 91.160
SD 15.234 18.463 14.546 15.726 15.366 15.092

Note: VC = verbal comprehension; PO = perceptual organization; BW = basic word reading; RC = reading comprehension; CL =
calculation; RE = reasoning.

A large modification index (>3.84) suggests that a large im-
provement in model fit as measured by chi-square can be
expected if a certain fixed parameter is freed. The decision
of freeing a fixed parameter is less likely affected by chance
if it is based on a large modification index as well as a large
expected parameter change value.

As an illustration, Table 3 shows the simple descriptive
statistics of the variables for the model of Figure 2, and
Table 4 provides the parameter estimates (standardized and
unstandardized) and their standard error estimates. Had
one restricted the residuals of the latent READ and MATH
variables to be uncorrelated, the model would not fit the sam-
ple data well as suggested by some of the overall model fit
indices: χ 2

6 = 45.30, p < .01, RMSEA = .17 (>.10), SRMR =
.078 (acceptable because it is < .08). The solution was also
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Table 4. Parameter and Standard Error Estimates for the Model of Figure 2

Standardized Unstandardized Standard
Model Parameters Estimate Estimate Error

Loadings/effects on READ
BW .79 1.00a

RC .99 1.35 .10
VC .64 .48 .07
PO .07 .04 .05

Loadings/effects on MATH
CL .85 1.00a

RE .92 1.05 .07
VC .64 .55 .06
PO .23 .16 .05

Residual variances
BW .38 79.55 10.30
RC .02 5.28 11.96
CL .27 64.22 8.98
RE .16 36.77 7.88
READ .52 69.10 10.44
MATH .33 56.98 9.21

Covariances
VC and PO .70 198.05 24.39
Residuals of READ and MATH .21 31.05 6.31

Note: Table values are maximum likelihood estimates. VC = verbal comprehension; PO = perceptual organization; BW = basic
word reading; RC = reading comprehension; CL = calculation; RE = reasoning.
aFixed parameter to set the scale of the latent variable.

improper because there was a negative error variance esti-
mate. The modification index for the covariance between the
residuals of READ and MATH was 33.03 with unstandardized
expected parameter change of 29.44 (standardized expected
change = .20). There were other large modification indices.
However, freeing the residual covariance between READ and
MATH was deemed most justifiable because the relationship
between these two latent variables was not likely fully ex-
plained by the two intelligence subtests (VC and PO). The
modified model appeared to fit the data quite well ( χ 2

5 =
8.63, p = .12, RMSEA = .057, SRMR = .017). The actual chi-
square change from 45.30 to 8.63 (i.e., 36.67) was slightly
different from the estimated change (33.03), as was the ac-
tual parameter change (31.05 vs. 29.44; standardized value =
.21 vs. .20). The differences between the actual and estimated
changes are slight in this illustration because only one pa-
rameter was changed. Because parameter estimates are not
independent of each other, the actual and expected changes
may be very different if multiple parameters are changed
simultaneously, or the order of change may matter if multi-
ple parameters are changed one at a time. In other words,
different final models can potentially result when the same
initial model is modified by different analysts.

As a result, researchers are warned against making a large
number of changes and against making changes that are
not supported by strong substantive theories (e.g., Byrne,
1998, p. 126). Changes made based on modification indices
may not lead to the “true” model in a large variety of realis-
tic situations (MacCallum, 1986; MacCallum, Roznowski, &
Necowitz, 1992). The likelihood of success of post hoc mod-
ification depends on several conditions: It is higher if the
initial model is close to the “true” model, the search contin-
ues even when a statistically plausible model is obtained, the

search is restricted to paths that are theoretically justifiable,
and the sample size is large (MacCallum, 1986). Unfortu-
nately, whether the initially hypothesized model is close to
the “true” model is never known in practice. Therefore, one
can never be certain that the modified model is closer to the
“true” model.

Moreover, post hoc modification changes the confirmatory
approach of SEM. Instead of confirming or disconfirming
a theoretical model, modification searches can easily turn
modeling into an exploratory expedition. The model that
results from such searches often capitalizes on chance id-
iosyncrasies of sample data and may not generalize to other
samples (e.g., Browne & Cudeck, 1989; Tomarken & Waller,
2003). Hence, not only is it important to explicitly account for
the specifications made post hoc (e.g., Tomarken & Waller,
2003), but it is also crucial to cross-validate the final model
with independent samples (e.g., Browne & Cudeck, 1989).

Rather than data-driven post hoc modifications, it is of-
ten more defensible to consider multiple alternative models
a priori. That is, multiple models (e.g., based on compet-
ing theories or different sides of an argument) should be
specified prior to model fitting and the best fitting model is
selected among the alternatives. Jöreskog (1993) discussed
different modeling strategies more formally and referred to
the practice of post hoc modification as model generating,
the consideration of different models a priori as alternative
models, and the rejection of the misfit hypothesized model
as strictly confirmatory.

As models that are just-identified will fit the data per-
fectly regardless of the particular specifications, different
just-identified models (sub-models or the entire model) de-
tailed for the same set of variables are considered equivalent.
Equivalent models may be very different in implications but
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produce identical model-data fit. For instance, predicting
verbal ability from quantitative ability may be equivalent to
predicting quantitative ability from verbal ability or to equal
strength of reciprocal effects between verbal and quantita-
tive ability. In other words, the direction of causal hypotheses
cannot be ruled out (or determined) on empirical grounds
using cross-sectional data but on theoretical foundations, ex-
perimental control, or time precedence if longitudinal data
are available. See MacCallum, Wegener, Uchino, and Fabri-
gar (1993) and Williams, Bozdogan, and Aiman-Smith (1996)
for more detailed discussions of the problems and implica-
tions of equivalent models. Researchers are encouraged to
consider different models that may be empirically equivalent
to their selected final model(s) before they make any sub-
stantial claims. See Lee and Hershberger (1990) for ideas on
generating equivalent models.

Causal Relations

Although SEM allows the testing of causal hypotheses, a well
fitting SEM model does not and cannot prove causal rela-
tions without satisfying the necessary conditions for causal
inference, partly because of the problems of equivalent mod-
els discussed above. The conditions necessary to establish
causal relations include time precedence and robust rela-
tionship in the presence or absence of other variables (see
Kenny, 1979, and Pearl, 2000, for more detailed discussions
of causality). A selected well-fitting model in SEM is like a
retained null hypothesis in conventional hypothesis testing.
It remains plausible among perhaps many other models that
are not tested but may produce the same or better level of fit.
SEM users are cautioned not to make unwarranted causal
claims. Replications of findings with independent samples
are essential especially if the models are obtained based on
post hoc modifications. Moreover, if the models are intended
to be used in predicting future behaviors, their utility should
be evaluated in that context.

Software Programs
Most SEM analyses are conducted using one of the special-
ized SEM software programs. However, there are many op-
tions, and the choice is not always easy. Below is a list of the
commonly used programs for SEM. Special features of each
program are briefly discussed. It is important to note that this
list of programs and their associated features is by no means
comprehensive. This is a rapidly changing area and new
features are regularly added to the programs. Readers are
encouraged to consult the web sites of software publishers
for more detailed information and current developments.

LISREL

LISREL (linear structural relationships) is one of the ear-
liest SEM programs and perhaps the most frequently ref-
erenced program in SEM articles. Its version 8 (Jöreskog
& Sörbom, 1996a, 1996b) has three components: PRELIS,
SIMPLIS, and LISREL. PRELIS (pre-LISREL) is used in the
data preparation stage when raw data are available. Its main
functions include checking distributional assumptions, such
as univariate and multivariate normality, imputing data for
missing observations, and calculating summary statistics,
such as Pearson covariances for continuous variables, poly-
choric or polyserial correlations for categorical variables,

means, or asymptotic covariance matrix of variances and co-
variances (required for asymptotically distribution-free esti-
mator or Satorra and Bentler’s scaled chi-square and robust
standard errors; see footnote 5). PRELIS can be used as a
stand-alone program or in conjunction with other programs.
Summary statistics or raw data can be read by SIMPLIS or
LISREL for the estimation of SEM models. The LISREL syn-
tax requires the understanding of matrix notation while the
SIMPLIS syntax is equation-based and uses variable names
defined by users. Both LISREL and SIMPLIS syntax can be
built through interactive LISREL by entering information for
the model construction wizards. Alternatively, syntax can be
built by drawing the models on the Path Diagram screen.
LISREL 8.7 allows the analysis of multilevel models for hier-
archical data in addition to the core models. A free student
version of the program, which has the same features as the
full version but limits the number of observed variables to
12, is available from the web site of Scientific Software In-
ternational, Inc. (http://www.ssicentral.com). This web site
also offers a list of illustrative examples of LISREL’s basic
and new features.

EQS

Version 6 (Bentler, 2002; Bentler & Wu, 2002) of EQS (Equa-
tions) provides many general statistical functions includ-
ing descriptive statistics, t-test, ANOVA, multiple regression,
nonparametric statistical analysis, and EFA. Various data ex-
ploration plots, such as scatter plot, histogram, and matrix
plot are readily available in EQS for users to gain intuitive
insights into modeling problems. Similar to LISREL, EQS
allows different ways of writing syntax for model specifica-
tion. The program can generate syntax through the available
templates under the “Build_EQS” menu, which prompts the
user to enter information regarding the model and data for
analysis, or through the Diagrammer, which allows the user
to draw the model. Unlike LISREL, however, data screening
(information about missing pattern and distribution of ob-
served variables) and model estimation are performed in one
run in EQS when raw data are available. Model-based impu-
tation that relies on a predictive distribution of the missing
data is also available in EQS. Moreover, EQS generates a
number of alternative model chi-square statistics for non-
normal or categorical data when raw data are available. The
program can also estimate multilevel models for hierarchical
data. Visit http://www.mvsoft.com for a comprehensive list
of EQS’s basic functions and notable features.

Mplus

Version 3 (Muthén & Muthén, 1998–2004) of the Mplus pro-
gram includes a Base program and three add-on modules.
The Mplus Base program can analyze almost all single-level
models that can be estimated by other SEM programs. Unlike
LISREL or EQS, Mplus version 3 is mostly syntax-driven and
does not produce model diagrams. Users can interact with the
Mplus Base program through a language generator wizard,
which prompts users to enter data information and select the
estimation and output options. Mplus then converts the infor-
mation into its program-specific syntax. However, users have
to supply the model specification in Mplus language them-
selves. Mplus Base also offers a robust option for non-normal
data and a special full-information maximum likelihood es-
timation method for missing data (see footnote 4). With the
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add-on modules, Mplus can analyze multilevel models and
models with latent categorical variables, such as latent class
and latent profile analysis. The modeling of latent categorical
variables in Mplus is so far unrivaled by other programs. The
official web site of Mplus (http://www.statmodel.com) offers
a comprehensive list of resources including basic features of
the program, illustrative examples, online training courses,
and a discussion forum for users.

Amos

Amos (analysis of moment structure) version 5 (Arbuckle,
2003) is distributed with SPSS (SPSS, Inc., 2006). It has
two components: Amos Graphics and Amos Basic. Similar
to the LISREL Path Diagram and SIMPLIS syntax, respec-
tively, Amos Graphics permits the specification of models by
diagram drawing whereas Amos Basic allows the specifica-
tion from equation statements. A notable feature of Amos is
its capability for producing bootstrapped standard error es-
timates and confidence intervals for parameter estimates.
An alternative full-information maximum likelihood esti-
mation method for missing data is also available in Amos.
The program is available at http://www.smallwaters.com or
http://www.spss.com/amos/.

Mx

Mx (Matrix) version 6 (Neale, Boker, Xie, & Maes, 2003) is
a free program downloadable from http://www.vcu.edu/mx/.
The Mx Graph version is for Microsoft Windows users. Users
can provide model and data information through the Mx
programming language. Alternatively, models can be drawn
in the drawing editor of the Mx Graph version and submitted
for analysis. Mx Graph can calculate confidence intervals
and statistical power for parameter estimates. Like Amos and
Mplus, a special form of full-information maximum likelihood
estimation is available for missing data in Mx.

Others

In addition to SPSS, several other general statistical soft-
ware packages offer built-in routines or procedures that are
designed for SEM analyses. They include the CALIS (co-
variance analysis and linear structural equations) proce-
dure of SAS (SAS Institute Inc., 2000; http://www.sas.com/),
the RAMONA (reticular action model or near approxi-
mation) module of SYSTAT (Systat Software, Inc., 2002;
http://www.systat.com/), and SEPATH (structural equation
modeling and path analysis) of Statistica (StatSoft, Inc.,
2003; http://www.statsoft.com/products/advanced.html).

Summary
This module has provided a cursory tour of SEM. Despite
its brevity, most relevant and important considerations in
applying SEM have been highlighted. Most specialized SEM
software programs have become very user-friendly, which can
be either a blessing or a curse. Many SEM novices believe
that SEM analysis is nothing more than drawing a diagram
and pressing a button. The goal of this module is to alert
readers to the complexity of SEM. The journey in SEM can
be exciting because of its versatility and yet frustrating be-
cause the first ride in SEM analysis is not necessarily smooth
for everyone. Some may run into data problems, such as
missing data, non-normality of observed variables, or multi-

collinearity; estimation problems that could be due to data
problems or identification problems in model specification;
or interpretation problems due to unreasonable estimates.
When problems arise, SEM users will need to know how to
troubleshoot systematically and ultimately solve the prob-
lems. Although individual problems vary, there are some
common sources and potential solutions informed by the lit-
erature. For a rather comprehensive list of references by top-
ics, visit http://www.upa.pdx.edu/IOA/newsom/semrefs.htm.
Serious SEM users should stay abreast of the current devel-
opments as SEM is still growing in its estimation techniques
and expanding in its applications.

Self-Test
1. List at least two advantages of structural equation mod-

els over regular ANOVA and regression models.
2. In a conventional SEM diagram, Y1→Y2 means:

A. Y2 is an exogenous variable.
B. Variation in Y2 is affected by variation in Y1.
C. Variation in Y1 is explained within the model.
D. Y1 and Y2 are correlated.

3. What is NOT included in a path model?

A. Exogenous variable
B. Endogenous variable
C. Latent variable
D. Disturbance

4. What is a mediator in a path model?
5. Which of the following statements regarding path mod-

els is NOT correct?

A. It is an extension of multiple regressions.
B. It can be used to examine mediation effects.
C. Measurement errors are well accounted for in path

models.
D. It can be used to examine causal hypotheses betw-

een independent and dependent variables.

6. A researcher wants to study the effect of SES on stu-
dents’ classroom behavior and would like to find out
whether SES affects classroom behavior directly or
indirectly by way of its direct effect on academic
achievement. Which of the following models is the most
appropriate for this study?

A. Confirmatory factor analysis model
B. Path model
C. Growth model
D. Multiple-sample model

7. What are some possible ways of accounting for measure-
ment errors of observed variables in SEM?

8. What does it mean for a model to be identified?

A. The model is theory based.
B. Fit indices for the model are all satisfactory.
C. An SEM program successfully produces a solution

for the model.
D. There exists a unique solution for every free para-

meter in the model.

9. In order for a model to be identified, we must set the
variances of the latent variables to 1. T/F
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10. The model test statistic, (N − 1)F min, has a chi-square
distribution, where N is the sample size and F min is
minimum of the fit function. T/F

11. Even if a model fits the data quite well, it is still very
likely that we will get a significant chi-square value.
T/F

12. Which of the following model fit indices is the most
sensitive to sample size?

A. Chi-square
B. RMSEA
C. SRMR
D. CFI

13. Which of the following most likely suggests bad model
fit?

A. High values in incremental fit indices
B. High value in GFI
C. High value in model chi-square
D. High value in RMSEA

14. Which of the following suggests improper solution to
the model?

A. Nonsignificant residual variance
B. Negative disturbance variance
C. Negative covariance
D. Small correlation

15. Which of the following statements about modification
index is true?

A. It indicates the amount of change in parameter
estimates if we free a certain fixed parameter.

B. Model modification decisions must be based on
modification index values.

C. All parameters that have modification index values
larger than 3.84 should be freed.

D. It indicates the amount of change in chi-square if
we free a certain fixed parameter.

16. One of the advantages of using SEM is that causal rela-
tions among variables can be established using cross-
sectional data. T/F

Key to Self-Test
1. SEM can include both observed and latent variables, and

relationships among latent constructs can be examined;
several dependent variables can be studied in a single SEM
analysis; equation residuals can be correlated in SEM.

2. B
3. C
4. A mediator is a variable that serves as both a source variable

and a result variable. In other words, it affects, and is also
affected by, some other variables within the model.

5. C
6. B
7. There are two possible ways: (1) incorporate reliability co-

efficients, if applicable, by fixing error variances to squared
standard errors of measurement; (2) incorporate measure-
ment models when multiple indicators of the constructs are
available.

8. D
9. F (The scale of a latent variable can be set in two ways:

standardizing or fixing the factor loading of one indicator
to 1.)

10. F (It has a chi-square distribution only when the model is
correctly specified and other model assumptions are satis-
fied.)

11. T (Holding model-data discrepancy constant, model chi-
square value increases as sample size increases.)

12. A
13. D (Both high values of model chi-square and RMSEA indi-

cate bad model fit but chi-square is also affected by sample
size, so the best option is RMSEA.)

14. B
15. D
16. F (There are certain necessary conditions for causal rela-

tions that are not likely satisfied by cross-sectional studies.)
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Notes
1When a model involves feedback or reciprocal relations or
correlated residuals, it is said to be nonrecursive; otherwise
the model is recursive. The distinction between recursive and
nonrecursive models is important for model identification
and estimation.

2The term error variance is often used interchangeably
with unique variance (that which is not common vari-
ance). In measurement theory, unique variance consists of
both “true unique variance” and “measurement error vari-
ance,” and only measurement error variance is considered
the source of unreliability. Because the two components of
unique variance are not separately estimated in measure-
ment models, they are simply called “error” variance.

3This principle of identification in SEM is also known as
the t-rule (Bollen, 1989, p. 93, p. 242). Given the number
of p observed variables in any covariance-structure model,
the number of variances and covariances is p(p + 1)/2. The
parameters to be estimated include factor loadings of mea-
surement models, path coefficients of structural relations,
and variances and covariances of exogenous variables in-
cluding those of residuals. In the math ability example, the
number of observed variances and covariances is 7(8)/2 =
28 and the number of parameters to be estimated is 15
(5 loadings + 2 path coefficients + 3 variance–covariance
among predictors + 6 residual variances – 1 to set the scale
of the latent factor). Because 28 is greater than 15, the model
satisfies the t-rule.

4It is not uncommon to have missing observations in any
research study. Provided data are missing completely at ran-
dom, common ways of handling missing data, such as impu-
tation, pairwise deletion, or listwise deletion can be applied.
However, pairwise deletion may create estimation problems
for SEM because a covariance matrix that is computed based
on different numbers of cases may be singular or some es-
timates may be out-of-bound. Recent versions of some SEM
software programs offer a special maximum likelihood es-
timation method (referred to as full-information maximum
likelihood), which uses all available data for estimation and
requires no imputation. This option is logically appealing
because there is no need to make additional assumptions for
imputation and there is no loss of observations. It has also
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been found to work better than listwise deletion in simulation
studies (Kline, 2005, p. 56).

5When this distributional assumption is violated, parame-
ter estimates may still be unbiased (if the proper covariance
or correlation matrix is analyzed, that is, Pearson for con-
tinuous variables, polychoric, or polyserial correlation when
categorical variable is involved) but their estimated stan-
dard errors will likely be underestimated and the model
chi-square statistic will be inflated. In other words, when
the distributional assumption is violated, statistical infer-
ence may be incorrect. Other estimation methods that do
not make distributional assumptions (e.g., the asymptoti-
cally distribution-free estimator or weighed least squares
based on the full asymptotic variance–covariance matrix of
the estimated variances and covariances) are available but
they often require unrealistically large sample sizes to work
satisfactorily (N > 1,000). When the sample size is not that
large, a viable alternative is to request robust estimation
from some SEM software programs (e.g., LISREL8, EQS6,
Mplus3), which provides some adjustment to the chi-square
statistic and standard error estimates based on the severity
of non-normality (Satorra & Bentler, 1994). Statistical in-
ference based on adjusted statistics has been found to work
quite satisfactorily provided sample size is not too small.
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