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Scaling: An ITEMS Module

Ye Tong, Pearson, and Michael J. Kolen, The University of Iowa

Scaling is the process of constructing a score scale that associates numbers or other ordered
indicators with the performance of examinees. Scaling typically is conducted to aid users in
interpreting test results. This module describes different types of raw scores and scale scores,
illustrates how to incorporate various sources of information into a score scale, and introduces
vertical scaling and its related designs and methodologies as a special type of scaling. After
completion of this module, the reader should be able to understand the relationship between
various types of raw scores, understand the relationship between raw scores and scale scores,
construct a scale with desired properties, evaluate an existing score scale, understand how content
and standards information are built into a scale, and understand how vertical scales are developed
and used in practice.
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S tudent A takes the state assessment in year 1 and correctly
answers 20 items out of a total of 30 items. Student B takes

the state assessment with a different set of test questions
(test form) in year 2 and also correctly answers 20 items out
of a total of 30 items. By earning the same number-correct
raw score on the same state assessment, can we tell whether
these two students possess the same level of achievement?
We cannot safely make this conclusion because the two test
forms from the two years might be somewhat different in
difficulty.

When test developers construct test forms, efforts are made
to ensure the alternate test forms are as similar as possi-
ble from one administration to the next. Even so, alternate
test forms generally differ somewhat in difficulty. A number-
correct raw score of 20 on one test form does not necessarily
indicate the same level of achievement as a number-correct
raw score of 20 on another test form. Consequently, informa-
tion contained in a raw score is limited. Almost all large-scale
assessments report scale scores to provide information that
cannot be reflected in a raw score.

Scaling is the process of constructing a score scale that
associates numbers or other ordered indicators with the per-
formance of examinees (Kolen & Brennan, 2004). These num-
bers and ordered indicators are intended to reflect increasing
levels of achievement or proficiency. The process of scaling
produces a score scale, and the resulting scores are referred
to as scale scores.

Through the psychometric process of equating, the statis-
tical relationship among raw scores on alternate test forms
is established. After equating is conducted, a scaling process
is applied to convert raw scores on alternate forms to scale
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scores. The conversion can be a linear or a nonlinear trans-
formation. Test developers can choose which numbers and
transformations to use. After the raw scores are converted to
scale scores, comparisons can be made from scores earned
on alternate test forms. For the example mentioned earlier,
Student A’s raw score of 20 might be converted to a scale
score of 14; Student B’s raw score of 20 might be converted to
a scale score of 15. This might happen if the alternate form
given in year 1 was somewhat easier than the alternate form
given in year 2. In this case, we can say that Student B earned
a higher scale score than Student A on the test.

Additional information often is incorporated into a scale
score during the scaling process. For example, normative in-
formation is included so that an examinee’s performance can
be compared to a relevant reference group. Score precision
information is incorporated so that test users will not over-
interpret differences among scores. Content information is
added so that an examinee’s performance can be compared
to an established performance standard.

Furthermore, when tests are part of a battery—a set of
tests developed together to measure student achievement,
such as the Iowa Tests of Basic Skills (ITBS: Hoover, Dunbar,
& Frisbie, 2003)—scale scores can allow for interpretation
of students’ strengths and weaknesses across content areas.
Using common scaling conventions for all tests in a battery
facilitates computation of composite scores across tests—an
overall measure of achievement or proficiency.

In some Kindergarten through Grade 12 (K–12) large-scale
assessment programs, especially after the implementation of
the No Child Left Behind Act of 2001 (NCLB; Public Law
107–110), test developers and users are interested in tracking
students’ academic growth. Vertical scales are constructed
to span tests targeting different educational levels. Vertical
scaling is the process used to construct a vertical scale so that
scale scores on tests can be compared across grades. After a
meaningful vertical scale is established by the test developer,
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interpretations such as that a given student grew more from
third to fourth grade than he or she did from seventh to eighth
grade can be made by test users.

Petersen, Kolen, and Hoover (1989) stated that “the main
purpose of scaling is to aid users in interpreting test results”
(p. 222). The perspective on scaling taken in this module is
consistent with this statement. We take the position that test
content and specifications drive test development. Scaling
procedures are applied after tests are developed to help facil-
itate interpretations of the results. In this module, discussions
of types of raw scores are presented first followed by the con-
struction of score scales. Vertical scaling designs, methods,
and research then are described. In addition, a self-test with
answer key is provided.

Raw Scores
Traditionally, the raw score on a test was defined as “the
number, proportion, or percentage” of test items that an ex-
aminee answers correctly (Petersen et al., 1989, p. 222). In
the previous example, both students earned a raw score of
20 on the assessment. Performance assessments, computer-
based tests, and the use of item response theory (IRT) (Yen
& Fitzpatrick, 2006) have used other types of raw scores.

Raw scores have serious limitations as primary-scale scores
for tests. Certain types of raw scores, including number-
correct scores, depend on the items that are on a test. When
multiple forms of a test exist, such raw scores do not have a
consistent meaning across forms. As in the previous example,
the two students earning the same number-correct scores on
two alternate forms of the same test do not necessarily have
the same level of achievement.

When IRT assumptions hold and test items are properly
calibrated and placed on the same IRT scale, the IRT profi-
ciency scale does not depend on the items that the student
has taken. However, the scaling conventions used with IRT
(often unrounded scores with a mean of 0 and a standard
deviation of 1) typically do not produce scores that lead to
meaningful interpretations without further transformation.

For mixed-format tests, different weights often are applied
to scores on the various item types. Test developers can decide
on the desired proportional contribution of each item type
based on the perceived importance of each item type to the
total test, the observed score effective weights, the weights
chosen to maximize reliability or other statistical properties,
and so on (Kolen, 2006). In the previous example, suppose
Student A earned the raw score of 20 by correctly answering
20 multiple-choice (MC) items, and Student B earned the
raw score of 20 by correctly answering 16 MC items and one
4-credit constructed-response (CR) item. Depending on the
weights that the test developers preassigned to this particular
test, the two students could earn quite different scale scores.

When IRT is used with a mixed-format test, the test de-
veloper must decide whether the item types are measuring
constructs that are similar enough that a unidimensional IRT
model can fit to the various item types (Kolen, 2006; Ro-
driguez, 2003; Wainer & Thissen, 1993). With the exception
of the Rasch model, when fitting an IRT model to a mixed-
format test, the weighting of each item type can depend on
the extent that the item type discriminates near an exami-
nee’s proficiency. Test developers need to determine whether
these statistical weights reflect the contribution of each item
type to the assessment.

Transformations
So far we have discussed various types of raw scores and their
related considerations. Different types of transformations are
considered in this section. To transform raw scores to scale
scores, linear or nonlinear transformations are applied.

Linear Transformations

Linear transformations can be used to transform raw scores
to scale scores. One way to linearly transform raw scores to
scale scores is to specify scale score equivalents of two raw
score points. Defining x1 and x2 as these two raw score points
and S(x1) and S(x2) as the desired scale score equivalents,

S(x) =
[

S(x2) − S(x1)
x2 − x1

]
x

+
{

S(x1) −
[

S(x2) − S(x1)
x2 − x1

]
x1

}
(1)

defines a linear raw-to-scale score equivalent.
Alternatively, if the mean and standard deviation of the

scale scores are specified by the test developer and the mean
and standard deviation of the raw scores are known, a linear
transformation can be established to transform raw scores to
scale scores. When it is desirable to specify one scale score
equivalent and the standard deviation of the scale scores,
the linear transformation can be similarly established. Kolen
(2006) provided formulas for these different scenarios.

Nonlinear Transformations

Nonlinear transformations can take on almost any monoton-
ically nondecreasing form, such that the scale score corre-
sponding to a particular raw score is greater than or equal
to the scale score corresponding to a lower raw score. One of
the least complicated nonlinear transformations is to round
the scale scores created by a linear transformation to inte-
gers. Another nonlinear transformation is truncation, which
is used to ensure that all scale scores are within a desired
range.

Rounding and truncation processes are used in many test-
ing programs when the raw-to-scale score transformation be-
gins with a linear transformation. Many testing programs that
use IRT-based proficiencies as raw scores linearly transform
the IRT proficiency estimates, round these estimates to in-
tegers, and truncate the scale at minimum and maximum
scores. Equation 1 can be used in such a context, substitut-
ing the raw scores with the desired IRT proficiencies. Such
a practice often is used with large-scale assessments where
cut scores are identified (often two cut scores, Proficient
and Advanced) and there are desired scale score values test
developers want to use as cut scores.

More complex nonlinear transformations are sometimes
used. One such transformation is to convert raw scores to
scale scores with a desired distributional shape. One com-
monly used shape is a normal distribution, and the process of
constructing such scores is referred to as the process of nor-
malizing scores. Kolen (2006) provided detailed steps on how
such normalized scores are calculated with the desired mean
and standard deviation. Some normalized scores include T-
scores (McCall, 1939), intelligence test scores (Angoff, 1971,
pp. 525–526), stanines (Flanagan, 1951, p. 747), and normal
curve equivalents.
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Information Contained in Score Scales
Incorporating information into score scales is considered in
this section. Normative, score precision, and content infor-
mation can be incorporated to facilitate score interpretation
by test users.

Normative Information

The process of incorporating normative information into a
score scale begins by administering the test to a group of
examinees, commonly referred to as the norm group. The
norm group might be defined by the test developer as test
users at a particular point in time. The norm group chosen for
constructing a scale strongly influences the meaning of the
resulting scale scores. Linear or nonlinear transformations
can be applied, as long as a meaningful norm group has been
defined. For example, a scale might be constructed so that
the mean of the scale scores is 500, the standard deviation
of the scale scores is 100, and the scores are approximately
normally distributed.

Score Precision Information

Flanagan (1951) pointed out that scale score units should “be
of an order of magnitude most appropriate to express their
accuracy of measurement” (p. 746). The choice of the number
of scale score units involves using a sufficient number of units
to preserve score precision in the raw scores, but not so many
that test users attach significance to score differences that
are small relative to measurement error.

How many score points should be used? Over the years, var-
ious rules of thumb have been developed for choosing the
number of scale score units. One of these rules was origi-
nally used in developing the scale for the Iowa Tests of Ed-
ucational Development (ITED, 1958). The ITED scale was
constructed in 1942, using integer scores with the property
that an approximate 50% confidence interval for true scores
could be found by adding and subtracting 1 scale score point
to and from an examinee’s scale score. Similarly, Truman
L. Kelley (W. H. Angoff, personal communication, Febru-
ary, 17, 1987) suggested constructing scale scores so that
an approximate confidence interval could be constructed by
adding 3 scale score points to and subtracting 3 scale score
points from each examinee’s scale score. These confidence
interval statements were translated into the desired num-
ber of discrete scale score points by finding a range of inte-
ger scores that are consistent with the confidence interval
properties stated. These rules are based on the following
assumptions:

1. Linear transformations of raw-to-scale scores are being
considered.

2. Measurement error, conditional on true score, is normally
distributed.

3. The conditional standard error of measurement (CSEM)
is constant along the score scale.

4. The reliability of raw scores,ρX X ′ , is known or a reasonable
estimate exists.

5. The range of scale scores of interest is 6 scale score stan-
dard deviations (6σS ).

6. The width of the desired confidence interval, symbolized
by h, is given. For example, h = 1 for the ITED rule and
h = 3 for Kelley’s rule mentioned earlier.

7. The confidence coefficient, γ , is given, and zγ is the unit-
normal score used to form a 100γ % confidence interval.
For example, γ = 50% and zγ ≈ .6745 for the ITED rule;
γ = 68% and zγ ≈ 1 for Kelley’s rule.

Based on these assumptions, the standard deviation of scale
scores is found as

σS = h

zγ

√
1 − ρX X ′

, (2)

as shown by Kolen and Brennan (2004, pp. 346–347). Multi-
plying σS by 6 and rounding to an integer gives the number of
distinct score points.

For example, assume that ρX X ′ = .91 and that the ITED
rule is being used, where h = 1 and zγ ≈ .6745. Substituting
these values into Equation 2 gives σS = 4.94. Multiplying
by 6 and rounding to an integer suggests that 30 scale score
points should be used given this rule.

Although developed under assumptions of constant and
normally distributed measurement errors and linear raw-to-
scale score transformations, these rules of thumb have been
used under a much wider set of conditions. Keeping in mind
that the confidence interval properties are only approximately
achieved when the assumptions are not met, these rules are
used as approximations when errors are not normally dis-
tributed or constant, and when the transformations of raw-
to-scale scores are not linear. They can also be used for all
types of raw scores, including IRT estimates of θ , as long as a
reasonable estimate of reliability is available.

Score scales with approximately equal CSEM. CSEMs index
the amount of measurement error involved for the various
score points on a test. In general, CSEMs for raw scores are
not constant along the score scale (Feldt & Brennan, 1989).
For summed scores, the CSEMs tend to be relatively large
for middle scores and small for very high and low scores.
For IRT-based raw scores, such as maximum likelihood and
Bayesian estimates of proficiency, the CSEMs typically follow
a pattern opposite to that for summed scores. In this case,
the CSEMs are smaller for the middle scores and larger at the
extremes. Kolen, Hanson, and Brennan (1992) demonstrated
that nonlinear transformations of raw scores can lead to a
pattern of CSEMs that is markedly different from that of the
raw scores.

In an attempt to simplify score interpretation, Kolen (1988)
suggested using an arcsine transformation that stabilizes the
magnitude of the CSEM. This transformation leads to CSEMs
that are approximately equal along the score scale. If the
reporting scale has such properties, then only one overall
CSEM needs to be provided to test users instead of multiple
values along the score scale.

Content Information

According to Ebel (1962), “to be meaningful any test scores
must be related to test content as well as to the scores of
other examinees” (p. 18). Ebel recommended that content
information be provided along with scale scores to aid score
interpretation. Three types of procedures for providing con-
tent meaning to scale scores are considered here and referred
to as item mapping, scale anchoring, and standard setting.

Item mapping. After constructing a score scale using one of
the methods already discussed, items are found that represent
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various scale score points. The set of items representing the
various scale score points are referred to as item maps. Zwick,
Senturk, Wang, and Loomis (2001) reviewed and studied
item-mapping procedures.

To implement item maps, test items are associated with
various scale score points. The probability of correct response
on each item for dichotomously-scored items or each score
point for polytomously-scored items is regressed on scale
scores using procedures such as logistic regression or IRT.
The response probability (RP) level, which is the probability
of correct response given scale score that is associated with
mastery on a test item, is stated by the test developer. The
same RP level is used for all items of a particular type on the
test. Using the regression of item score on scale score, an item
is said to map at the scale score that is associated with an
RP of correctly answering the item. According to Zwick et al.
(2001), values of RP ranging from .50 to .80 have been used for
item mapping with the National Assessment of Educational
Progress (NAEP). Huynh (1998) provided psychometric jus-
tifications for choosing RP. Additional criteria are often used
when choosing the items to report on item maps. For example,
items might be chosen only if they discriminate well between
the examinees who score above and below a particular score.
Also, items might be used only if subject matter experts in-
dicate that an item provides adequate representation of test
content.

The outcome of an item-mapping procedure is the specifica-
tion of test questions that represent various scale score points.
Item maps were constructed, for example, using an RP level
of 74% for MC test questions on the 1996 NAEP fourth-grade
Science Assessment (O’Sullivan, Reese, & Mazzeo, 1997).

Scale anchoring. The goal of scale anchoring is to provide
general statements of what students who score at each of a
selected set of scale score points know and are able to do.
The first step in scale anchoring is to create item maps for
the items on a test. Then a set of scale score points is chosen.
Typically, these points are either equally spaced along the
score scale or are selected at a particular set of percentiles.
Items that map at or near these points are chosen to represent
these points. Subject matter experts review the items that
map near each point and develop general statements that
represent the skills of examinees scoring at these points. In
scale anchoring, it is assumed that examinees know and are
able to do all the skills in the statements that are at or below
a given score level.

The scale anchoring process used with NAEP is described
by Allen, Carlson, and Zelenak (1999). A scale anchoring
process was used to develop the ACT Standards for Transition
for Explore, PLAN, and the ACT Assessment (ACT, 2001). A
process much like scale anchoring was also suggested by Ebel
(1962), although he used scores on a subset of items rather
than statements to display performance at each level.

Standard setting. Standard-setting procedures begin with
performance-level descriptors, which are statements of what
competent examinees know and are able to do at each per-
formance level. Standard-setting methods seek to find cut
scores, which are score points that divide the examinees who
know and are able to do what is stated from other exami-
nees. Standard setting is often used in professional licensure
and certification testing settings. With the implementation of

NCLB, standard setting also has become prevalent in K–12
assessments.

Often, a committee of educators or subject experts is as-
sembled, and these judges collectively develop performance-
level descriptors; sometimes, as an intermediate step, they
develop the most important statements defining students who
are barely meeting a certain standard. (There are other varia-
tions of this practice.) This exercise is particularly important
because it provides a common ground for content experts to
make judgments and recommendations on setting the stan-
dards. Next, the judges are provided with a set of test ques-
tions. A systematic procedure is used to collect information
and recommendations from the judges.

In one method, often referred to as the Modified Angoff
method, judges are asked to indicate the proportion of the
threshold examinees who should be expected to correctly an-
swer each item for a given performance level. The judgments
are aggregated over items and judges. The outcome of these
procedures typically is a summed score on the set of items
that represents the cut point.

The Bookmark procedure (Lewis, Green, Mitzel, Baum, &
Patz, 2003) is another prevalent methodology used in stan-
dard setting. With this methodology, the set of test questions
is ordered from the least difficult question to the most difficult
question, and it is often referred to as an ordered item book.
An RP value is chosen before the standard-setting meeting.
Judges are asked to consider the knowledge and skills the
test questions are measuring and their relationship with the
performance-level descriptors. The judges then go through
the ordered item book to determine, for each test question,
whether the threshold students have at least the given RP
of correctly answering the item. If the answer is “yes,” then
the judges move to the next test question on the ordered
item book until they reach the item where they consider the
answer to be “no.” The judges then place their bookmark
on the last “yes” item. The bookmark ratings are aggregated
across judges for each performance level. The end result is
cut scores, typically on an IRT scale.

The judges often go through a total of three rounds of such
an exercise before the final cut score recommendations are
made. Impact data, in the form of percentage of examinees
classified into each performance level based on the recom-
mended cut scores, are provided as a reality check. The cut
scores from the last round are considered the final recom-
mendations. Classification consistency and judge variability
often are estimated to assess the generalizability of the cut
score recommendations. If the standard-setting is conducted
for a range of grades, such as grades 3 through 8, then a ver-
tical articulation meeting sometimes follows the standard-
setting meetings for each grade. At the vertical articulation
session, typically, a subset of committee members from the
standard-setting meetings gather to observe the impact of rec-
ommended cut scores across the entire range of the grades
and determine if the cut scores need to be modified. More
recently, with K–12 assessments, some states have chosen to
invite policymakers to convene after the standard setting to
consider content experts’ cut scores together with the impact
of their cut scores for a final recommendation.

Standard setting is a judgmental process that incorporates
various sources of information, such as content standards,
performance-level descriptors, and policy statements. Other
popular standard-setting methods include the contrasting
groups method and the body of work method (see Cizek,
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Bunch, & Koons, 2004, for a summary of standard-setting
methods).

Once cut scores are obtained through standard setting,
test developers typically set the cut scores to have spe-
cific scale score values. A linear transformation (similar to
Equation 1) is applied to link raw scores to scale scores.
Rounding and truncation are often applied to keep the scores
within a certain range. For such a scale, statements about
what students should know and are able to do can be made
between cut score values, often using performance-level de-
scriptors.

Vertical Scaling
At times, it is desirable to track students’ academic growth
from one grade to the next. For example, Student A correctly
answered 20 items out of 30 items in year 1 and correctly an-
swered 20 items out of 30 items on the same assessment the
next year. Does this mean that Student A has made progress?
Did Student A demonstrate the same amount of growth as
an average student? Again, raw scores do not provide enough
information to make such comparisons or interpretations.
In this case, a vertical scale sometimes is used. Educational
achievement and aptitude tests (e.g., ITBS: Hoover et al.,
2003; Cognitive Abilities Test: Lohman & Hagen, 2002) typi-
cally are constructed using multiple-test levels, where each
level is constructed to be appropriate for students at a par-
ticular grade or age. Vertical scaling procedures are used to
relate scores on these multiple-test levels to a common scale.

Vertical scaling is much more complicated than within-
grade scaling. Research shows that various decisions in the
scaling process tend to lead to different vertical scales with
different growth implications (Tong & Kolen, 2007).

Background and NCLB

NCLB requires that all students be tested in reading and
mathematics (and other subjects in the future) in grades 3
through 8 and that all states have grade-level content and pro-
ficiency standards. Growth modeling is also required under
NCLB, with a phase-in plan. NCLB growth modeling does not
require a vertical scale. However, due to the desired interpre-
tations, an effective vertical scale can facilitate the growth
modeling process. Many states—including Texas, Florida,
Minnesota, Colorado, and North Carolina—have considered
vertical scales for their grades 3 through 8 assessments.

When a vertical scale is effectively established, it can sup-
port the following interpretations:

1. Assessment of individual student growth. Example: Paula’s
score increased more than John’s score from third to fourth
grade.

2. Mapping of items and skills within and across grades on
a single scale. Example: The fourth-grade items covering
content domain A are more difficult than sixth-grade items
covering content domain B.

3. Relating proficiency standards from different grades to a
single scale. Example: A student who is “advanced” in fourth
grade is higher achieving than a student who is “proficient”
in fifth grade.

Despite the difficulty of establishing a vertical scale, test
developers continue to explore ways to construct effective
and psychometrically sound vertical scales because of their
many desired properties.

Definition of Growth

There is not a single prevalent definition for students’ aca-
demic growth. The nature of growth is more of a theoretical
issue than a measurement issue and is affected by such con-
siderations as child development, psychology, and how school
curricula are implemented (Harris, Hendrickson, Tong, Shin,
& Shyu, 2004).

Kolen and Brennan (2004) discussed two types of defini-
tions for growth. Considering a domain of content covered by
an achievement test over all grade levels, the domain defi-
nition of growth refers to growth over all the content in the
domain. Conversely, the grade-to-grade definition of growth
is defined over the content that is on a test level appropriate
for students in a particular grade. Therefore, under the do-
main definition, growth by a student from one year to the next
is defined over the entire content domain across all grades.
Under the grade-to-grade definition, growth is assessed using
the content included in adjacent grades. For subject matter
areas that are closely related to the school curriculum, growth
observed between adjacent grades tends to be different under
the two definitions of growth.

Data Collection Designs

A special data collection design usually is involved when a ver-
tical scale is being developed. In this module, three common
designs for data collections are described and compared.

Common-item design. Following this design, each test level
is administered to students at the appropriate grade. Com-
mon items between adjacent levels are included on the test.
Performance on the common items is used to indicate the
average amount of growth that occurs from one grade to the
next. One of the key decisions with this design is the selec-
tion of common items: should common items be selected from
both grades, or should the common items be selected from
only one grade? Opponents of the first approach argue that
students from lower grades should not be tested on items
for which they have not received instruction; opponents of
the second approach argue that such a common item set
may not achieve good representation of the content. Addi-
tionally, decisions need to be made on whether the common
items should be selected as a miniature of the entire test,
as typically seen in an equating setting, or to be a good rep-
resentation of the domain overlap between the two adjacent
grades. As described in Tong and Kolen (2007), different
decisions are likely to lead to vertical scales with different
properties.

To implement the common-item design, one grade level is
designated as the base level. Students’ performance on the
common items is used to link scores from adjacent grades. A
chaining process is then used to link scores from all levels to
scores on the base level. For example, if grade 5 was selected
to be the base level, to link grade 7 scores to the base scale,
grade 7 scores are placed onto the same scale as grade 6,
through items that are common between grades 6 and 7 tests.
Next, grade 6 scores are placed onto the grade 5 score scale
through the items that are common between grades 5 and 6.
Using this chain, scores on grade 7 are placed onto the grade
5 base scale. Many of the vertical scales developed in K–12
assessments use the common-item design.

Winter 2010 43



Equivalent groups design. In the equivalent groups design,
examinees in each grade are randomly assigned to take either
the test level designed for their grade or the test level designed
for adjacent grades. Through the random equivalence of the
groups, students’ performance on the tests from adjacent
levels can help establish the average growth from one grade
to the next. A base grade is again chosen, and by chaining
across grades, the data from this administration are used to
place scores from all test levels onto the same scale. Note
that this design does not necessarily require common items
between adjacent grades. Instead, it uses common people to
establish the link. Because this design requires students to
be administered a test level not designed for their grade, it is
not used very often in practice.

Scaling test design. In the scaling test design, a special test
called a scaling test is constructed that spans the content
across all grade levels of interest. Students in all grades are
administered the same scaling test. In addition, students also
take a test that is appropriate for their grade. The score
scale is defined using scores on the scaling test. The level-
specific tests serve to better measure students’ proficiency.
The challenge when using this design is to construct the
special scaling test that covers the entire content domain
from lower to higher grades. The scaling test design is used
to construct the vertical scale for the ITBS.

Similarities and differences. The common-item design can
be implemented within an operational setting. The equiv-
alent groups design requires a special administration. The
scaling test design requires construction of a scaling test and
a special administration. For both the scaling test design and
the equivalent groups design, students can take many test
questions that are not appropriate for the grades they are in.

Although it is the most difficult to implement, the scaling
test design has the advantage of explicitly considering the do-
main definition of growth by ordering students from all grades
on a single test. The other two designs do not allow for an
explicit ordering because examinees in different grades take
different test questions. The scaling test design is expected to
produce scaling results that are different from those produced
by the other two designs, especially for content areas that are
closely tied to the curriculum. The growth implications may
also differ across the designs (Tong & Kolen, 2007).

Scaling Methods

After the test is constructed and data collected, statistical
methods are used to construct the vertical scale. In this
section, three general statistical approaches are considered.
Within each of these general statistical approaches, the spe-
cific procedures that are used depend on the data collection
design.

Hieronymus scaling. The developmental score scale used
on the ITBS (Hoover et al., 2003) was constructed using the
Hieronymus scaling method that was originally developed by
Albert Hieronymus (Petersen et al., 1989, p. 232). Under this
scaling method, test developers start with a model that best
reflects the nature of the assessment. Although it can be
used with any data collection design, this method was devel-
oped specifically to be used with the scaling test design. To

conduct the scaling, the median summed score on the scal-
ing test for each grade level is assigned a prespecified scale
score value. These prespecified values are based on the test
developer’s expectations on how year-to-year median growth
changes based on the construct being measured. For example,
with the current forms of the ITBS, the test developer’s model
for growth is that the average amount of growth from year-
to-year decreases over grades and that the students become
more variable in academic achievement. A vertical scale is
built to reflect such a model, with decelerating growth and
increasing within-grade standard deviations.

After the conversion of scaling test scores to scale scores
is found, scores on each of the level tests are related to
the vertical scale through the scaling test. As described by
Petersen et al. (1989), Hieronymus scaling uses distributions
of Kelley regressed score estimates of true scores on the
scaling test and the level tests in this linking process. Because
the level tests are targeted to the examinees at each grade,
they tend to yield scores at each grade that are more reliable
than the scores on the scaling test. Using estimated true
scores is intended to handle these differences in reliability.

Thurstone scaling. Thurstone (1938) described a scaling
method that involves normalizing summed scores within each
grade. Using any of the three data collection designs, this
method is based on the assumption that scale scores are nor-
mally distributed within grade and are linearly related across
grades. Summed scores are first converted to normalized z
scores. A subset of z scores is used in the Thurstone scal-
ing. Gulliksen (1950, p. 284) recommended choosing 10 or 20
raw score points when implementing this procedure and con-
structing scatter plots for the 10 or 20 z score pairs between
adjacent grades to determine if the relationship is linear.
Williams, Pommerich, and Thissen (1998) found that the
points chosen can affect the characteristics of the resulting
scale.

IRT scaling. IRT scaling makes use of the entire set of item-
level responses from examinees to the test questions. It can
be applied using any of the three data collection designs. For
any of the designs, various procedures can be used to estimate
IRT item parameter and examinee proficiency (Hambleton &
Swaminathan, 1985; Lord, 1980; van der Linden & Hambleton,
1997).

Two calibration approaches are often used for item param-
eter estimation. In separate calibration, item parameters are
estimated separately for each grade level. A chaining process
is applied to place all grade levels onto the same scale. In con-
current calibration, data for examinees across all grades are
calibrated in one computer run. Grade groups are identified
in the data so that the program allows for separate proficiency
distributions for each grade. After concurrent calibration, all
item parameters are on the same IRT scale, and no further
transformation is needed.

Kolen and Brennan (2004) pointed out that concurrent
calibration is often easier to implement, uses the maximum
amount of information, and produces more stable linking re-
sults when the IRT model holds (Hanson & Béguin, 2002;
Kim & Cohen, 1998). However, when the IRT model does not
hold, Béguin, Hanson, and Glas (2000), Béguin and Han-
son (2001), and Tong and Kolen (2007) found that sep-
arate calibration was more accurate. Kolen and Brennan
(2004, p. 391) suggested that separate calibration might be
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preferable because it mitigates the effects of violations of the
unidimensionality assumption in IRT. Furthermore, separate
calibration allows for comparison of different item param-
eter estimates for the common items, which often is used
to identify items that are behaving differently in adjacent
grades. In addition, concurrent calibration often has con-
vergence problems, especially when conducted across many
grades.

Various approaches exist for estimating examinee profi-
ciency. One decision made when applying many of the IRT
methods is whether to use raw scores as a function of summed
scores (summed scoring) or a function of the whole response
pattern (pattern scoring). A decision is also made about
whether to use maximum likelihood, Bayesian, or some other
type of proficiency estimate. The summed scoring approach
produces a one-to-one relationship between raw scores and
scale scores and is much easier to explain to test users
and the public. Pattern scoring uses more information and
tends to be more accurate, but is less easily explained to
users.

Tong and Kolen (2007) empirically compared scoring
procedures and proficiency estimators with data from an
achievement test battery and simulated data. With respect
to growth patterns, their results showed little difference be-
tween summed scoring and pattern scoring. Nontrivial dif-
ferences, however, were detected among proficiency estima-
tors, especially between the Maximum Likelihood Estimator
(MLE), θ̂MLE, and the Expected A Posteriori (EAP) estimator,
θ̂EAP. Both θ̂MLE and θ̂EAP depend on the entire item response
string; θ̂MLE does not exist for 0 or perfect scores; θ̂EAP is
a biased Bayes estimator, regresses toward the mean, and
tends to be affected by the prior distributions. Based on how
these estimators function, Kolen and Tong (2010) pointed
out the following patterns in marginal variance hold if the
distribution of proficiency is well specified:

var(θ̂TCF) > var(θ̂MLE) > var(θ̂EAP) > var(θ̂sEAP). (3)

In this equation, θ̂TCF refers to the proficiency estimate
based on the test characteristic function and is a summed
scoring estimator. θ̂sEAP refers to the proficiency estimate
based on the summed scoring using a Bayesian approach
(Thissen & Orlando, 2001). These characteristics of the es-
timators have implications for summary statistics for the re-
sulting vertical scales.

Under the common-item design, test levels either can be
separately calibrated and linked using common items or cal-
ibrated concurrently. Under the scaling test design, there
are a few possible approaches that include the following:
(a) concurrently calibrate the scaling test across grades and
separately calibrate the level tests for each grade, using the
scaling test results to establish the link; (b) concurrently
calibrate the scaling test and level tests; or (c) separately
calibrate the scaling test for each grade, separately calibrate
level tests, and use the scaling test results to establish the
link.

Scaling methods comparisons. All the scaling methods can
be used with any of the data collection designs. They all make
certain assumptions about score distributions, the underlying
construct, and item responses, and they all use some type of
statistical technique to establish the link among the grades.
Hieronymus scaling has only been used to scale the ITBS test

battery; Thurstone scaling has not been used very often in
recent years; and most of the existing vertical scales have
been established through an IRT scaling method. IRT scaling
involves decisions at multiple stages of the scaling process,
such as choosing an IRT model, a calibration approach, and a
scoring approach. The IRT method is also based on stringent
item-level assumptions.

Different scaling methods can produce vertical scales with
different characteristics. Growth patterns and within-grade
variability are two main features of vertical scales. Hierony-
mus scaling defines the characteristics of the scale ahead of
time and can produce a scale with desired properties that test
developers consider appropriate for the assessment. Thur-
stone scales tend to produce decelerating growth patterns
and increasing within-grade variability (Tong & Kolen, 2007;
Yen 1986; Yen & Burket, 1997). IRT methods tend to pro-
duce scales with decelerating growth (Tong & Kolen, 2007;
Williams et al., 1998). In terms of within-grade variability,
IRT scaling produces scales with an irregular trend (Becker
& Forsyth, 1992; Bock, 1983; Camilli, Yamamoto, & Wang,
1993; Seltzer, Frank, & Bryk, 1994; Williams et al., 1998; Yen
& Burket, 1997) or a decreasing trend, referred to as scale
shrinkage (Andrews, 1995; Hoover, 1984; Tong & Kolen, 2006,
2007; Yen, 1986).

Kolen and Brennan (2004) concluded that “research sug-
gests that vertical scaling is a very complex process that is
affected by many factors. These factors likely interact with
one another to produce characteristics of a particular scale.
The research record provides little guidance as to what meth-
ods and procedures work best” (p. 418). The choice of scale
should also be based, at least in part, on educational theory
about the construct measured by the test.

Concluding Comments
Yen (1986) pointed out that “choosing the right scale is not
an option. It is important that any choice of scale be made
consciously and that the reasons for the choice be carefully
considered. In making such choices, appealing to common
sense is no guarantee of unanimity of opinion or of reaching
a sensible conclusion” (p. 314). The perspective taken in
this module is that the purpose of scaling is to aid users in
interpreting test results. The incorporation of norms, score
precision, and content information into score scales are used
to help achieve this purpose.

Self-Test
1. A state has two assessment programs. One has a scale based

on state norms, with the mean set at 50 and the standard
deviation set at 15. The other program has a scale based
on cut scores from a standard setting, with “proficient”
corresponding to a scale score of 50 and “advanced” cor-
responding to a scale score of 70. After the scale for the
second program is developed, the standard deviation of the
score distribution is also 15. Kelly took the first assessment
and obtained a scale score of 65; David took the second
assessment and also obtained a scale score of 65. Can we
say that Kelly and David demonstrated the same level of
achievement on these two tests? What interpretations can
be made regarding their scale scores?

2. A state has an assessment program from grades 3 through 8.
Standard setting was conducted separately for each grade,
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with some type of vertical articulation across grades at the
end. The proficiency cut score was set to have a scale score
value of 300 for grade 3, 400 for grade 4, 500 for grade 5,
600 for grade 6, 700 for grade 7, and 800 for grade 8. Lily
scored 300 when she was in grade 3, and she scored 500
when she was in grade 4. Is it reasonable to assume that
Lily has reached the proficiency level for grade 5 based on
her test score from grade 4?

3. For a test with a reliability of .70, what would be the ap-
propriate number of score points for a scale where a 90%
confidence interval is to be constructed by adding and sub-
tracting 2 scale score points?

4. A test has raw scores ranging from 0 to 35.
a. The test developer would like to use a linear transforma-

tion to obtain a scale with the lowest scale score set at
100 and the highest scale score set at 300. If such a scale
is developed, what is the scale score value corresponding
to a raw score of 20?

b. After standard setting, the raw score of 18 was deter-
mined to be the cut score for “proficient,” and the raw
score of 25 was determined to be the cut score for “ad-
vanced.” The test developer would like to apply a linear
function to transform raw scores to scale scores, and
they would also like to set “proficient” to have a scale
score value of 200, and “advanced” to have a scale score
value of 250. Once the scale is developed, what is the
scale score value corresponding to a raw score of 20?

c. What different interpretations can be made regarding
a raw score of 20 based on the two different scaling
processes?

5. A vertical scale was established for a state test from grades
3 through 8. The test developer must decide whether to
use summed scoring or pattern scoring and which IRT
estimator to use. If you are the psychometrician making
recommendations, what characteristics of the following
estimators would you highlight to the test developers?
a. test characteristic function,
b. MLE,
c. EAP based on pattern scoring.

Answers to Self-Test
1. Without further information, it is difficult to determine

whether the two assessments are based on the same con-
struct, test specifications, and standards. Just because
Kelly and David obtained the same scale scores on two
separate assessments, this does not provide information
regarding their achievement levels in comparison to one
other. With Kelly’s score, a valid interpretation is that Kelly
scored 1 standard deviation above the mean. If the score
distribution is normal, Kelly’s percentile rank on this as-
sessment should be around 84. David’s score tells us that
he has mastered the knowledge and skills related to the
“proficiency” performance level on the assessment, but that
he has not quite yet reached the “advanced” requirement.

2. We cannot make that judgment. The assessment program
does not have a vertical scale. Vertical articulation is not
vertical scaling. An appropriate interpretation that we can
make is that Lily was right at the proficiency level when she
was in grade 3, but that she had surpassed the proficiency
level—possibly by quite a bit, depending on the character-
istics of the score distribution in grade 4 and how large the
standard deviation is—when she was in grade 4.

3. σS = h
zγ

√
1−ρX X ′ = 2

1.64
√

1−.70
= 2.2 . Therefore, 6(2.2) =

13.2 , approximately 13 score points.
4.

a. Using Equation 1,

S(x) =
[

S(x2) − S(x1)
x2 − x1

]
x

+
{

S(x1) −
[

S(x2) − S(x1)
x2 − x1

]
x1

}

= 300 − 100
35 − 0

x + 100 = 5.71x + 100.

Therefore, a raw score of 20 corresponds to a scale score
of S(x) = 5.71 ∗ 20 + 100 ≈ 214 .

b. Again, using Equation 1,

S(x) =
[

S(x2) − S(x1)
x2 − x1

]
x

+
{

S(x1) −
[

S(x2) − S(x1)
x2 − x1

]
x1

}

= 250 − 200
25 − 18

x +
{

200 −
[

250 − 200
25 − 18

]
18

}

= 7.14x + 71.43.

Therefore, rounding to an integer, a raw score of 20
corresponds to a scale score of S(x) = 7.14 ∗ 20 +
71.43 ≈ 214.

c. For part a of the question, no interpretation can be
attached to the scale score of 214 obtained. For part
b, we can say that if a student scores 214, this student
has mastered the knowledge and skills related to the
proficiency cut score of 200 and should know and be
able to do the requirements based on the performance-
level descriptors for proficiency. This student has not
yet reached the advanced performance level.

5. Different estimators have different statistical properties.
Before adoption of a certain IRT estimator, its character-
istics, and its effect on the resulting score distributions
should be examined and discussed.
a. The test characteristic function estimator, θ̂TCF , is a

summed scoring function. It is monotonically related to
the summed score. There is a one-to-one relationship
between raw score and the TCF estimate, which makes
interpretation relatively straightforward for test users.
This estimator likely contains more estimation error
than pattern-scoring-based estimators, and it tends to
produce relatively large variability of score distributions
compared with other estimators.

b. The MLE, θ̂MLE , depends on the entire pattern of item
responses. It might be difficult to explain to test users
why the same number-correct raw score does not nec-
essarily translate into the same scale score. In addition,
no estimates exist for a score of 0 or a perfect score, so
an adjustment is made for the two extreme scores. This
estimator tends to produce a score distribution with
slightly smaller variability than the score distribution
produced based on TCF.
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c. The EAP estimator, θ̂EAP , is based on the pattern of the
item responses. Similar to θ̂MLE , the same raw score
does not typically translate to the same scale score if
they are based on different item response patterns. As
a Bayes estimator, EAP is a biased estimator if the test
is less than perfectly reliable but tends to have smaller
root mean square error. It is also a shrinkage estimator
and tends to be influenced by the prior distribution used
to conduct the estimation. This estimator also tends to
produce a score distribution with less variability than
does θ̂MLE .
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