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There are two currentiJ' popular statistical frameworks for addressing 
measurement problems such as test development, test-score equating, 
and the identification of biased test items: classical test theory and item 
response theory (lRT). In this module, both theories and models 
associated with each are described and compared, and the ways in 
which test development generally proceeds within each framework are 
discussed. The intent of this module is to provide a nontechnical 
comparison of classical test theory and item response theory. 

Forty years ago, Dr. Frederic Lord made the important 
observation that examinee observed scores and true scores are 
not synonymous with ability scores: Ability scores are more 
fundamental because they are test independent whereas 
observed scores and true scores are test dependent (Lord, 
1953). The main idea is that examinees come to a test 
administration with ability levels or scores in relation to the 
construct being measured by the test. These ability scores are 
test independent. However, examinee test scores and corre­
sponding true scores will always depend on the selection of 
assessment tasks from the domain of assessment tasks over 
which their ability scores are defined. Examinees will have 
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lower true scores on difficult tests and higher true scores on 
easier tests, but their ability scores remain constant over any 
tests that might be built to measure the construct. 

Of course, over time, abilities may change because of 
instruction and other factors, but at the time of an assessment, 
each examinee will have an ability score that is defined in 
relation to the construct, and it remains invariant (i.e., 
independent) over various samples of assessment tasks that 
might be used in the assessment. This illustration demon­
strates that there is a more fundamental concept than an 
examinee's true score operating. It is this more fundamental 
concept that often is of interest in assessment. For example, in 
computer adaptive testing, in which examinees may see tests of 
substantially different difficulties, test-dependent scores such 
as estimated true scores would be of no value in comparing 
examinees. Ability scores or estimated ability scores that are 
independent of the particular choice of test items would be of 
value because they would permit fair norm-referenced compar­
isons. 

Lord (1952,1953) and ahost of psychometricians before him 
(see for example Gulliksen, 1950) were interested in psychomet­
ric theories and models that might lead to descriptions of 
examinees that would be independent of the particular choice 
of items or assessment tasks that were used in a test. Also, 
some psychometricians felt that measurement practices would 
be enhanced if item and test statistics could be made sample 
independent too. One step in that direction in classical 
measurement is the preference of biserial correlations over 
point biserial correlations in estimating item discriminating 
power because the former are more invariant over examinee 
samples than the latter (see Lord & Novick, 1968). Basically, 
however, classical item statistics such as item difficulty (i.e., 
proportion correct) and item discrimination (i.e., point biserial 
correlations) and test statistics such as test reliability are 
dependent on the examinee sample in which they are obtained. 
Of course, this is not necessarily a problem, and thousands of 
excellent tests have been constructed in this way (including all 
important tests up to the end of the 1960s), though special 
emphasis is placed on obtaining suitable examinee samples for 
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obtaining item and test statistics and producing statistically 
parallel tests. 

For measurement specialists who value invariant item and 
person statistics, one solution lies in the concepts, models, and 
methods associated with item response theory. This was the 
point made by Lord in his doctoral thesis and published as a 
psychometric monograph in 1952 and in an article in 1953 
(though at the time the field was known as latent trait theory). 
The rest is history, as they say. First Allen Birnbaum wrote a 
series of technical reports in 1957 and 1958 (though his 
research is more accessible in Birnbaum, 1968), introducing 
logistic test models and model parameter estimation. Next 
Georg Rasch (1960) published a book describing several item 
response models, one of which later became known as the 
Rasch model (or the one-parameter logistic mode!), with 
applications to achievement testing. Later in the 1960s, work 
by Lord (see Lord, 1968; Lord & Novick, 1968) and by Wright 
(1968) brought considerable attention to the field of item 
response theory. Through the 1970s and 1980s the measure­
mentjournals (see for example Applied Psychological Measure­
ment and the Journal of Educational Measurement) were filled 
with technical advances and applications (see Hambleton, 
1989; Hambleton & Swaminathan, 1985; Lord, 1980; Wright & 
Stone, 1979), and many articles and books for practitioners 
that described IRT models and their applications were written 
(see for example Hambleton, 1989; Hambleton, Swaminathan, 
& Rogers, 1991; Harris, 1989; Loyd, 1988). 

Although item response theory and related models and 
applications have been under study for over 40 years, and 
extensively studied for,the past 25 years, classical test theory 
and related models have been researched and applied continu­
ously and successfully for well over 60 years, and many testing 
programs today remain firmly rooted in classical measurement 
models and methods. 

Now in 1993, measurement specialists have a choice of 
working within a classical test theory framework or an item 
response theory framework, or even a combination of frame­
works. The purposes of this instructional module are (a) to 
focus attention on the similarities and differences between 
classical test theory and item response theory and related 
concepts, models, and methods, and (b) to consider the ways in 
which tests are developed within the two statistical frame­
works. Our main intention is to be descriptive, though we have 
highlighted advantages and disadvantages of each framework 
when they have been well-documented in the measurement 
literature. 

Differences Between Theories and Models 
In casuallanguage, the terms "test theories" and "test models" 
are often used interchangeably. From a technical point of view 
there is an important difference. Test theories provide a 
general framework linking observable variables, such as test 
scores and item scores, to unobservable variables, such as true 
scores and ability scores. Because of the generality of the 
specifications, a test theory cannot be shown to be useful or 
useless. Thus, a test theory that introduces concepts such as 
true scores, test scores, and error scores cannot be judged as 
useful or useless until it is fully specified in the form of a 
particular model. On the other hand, particular test models are 
formulated within the framework of a test theory and do 
specify in considerable detail the relationships among a set of 
test theoretic concepts along with a set of assumptions about 
the concepts and their relationships. The appropriateness of 
such models can be evaluated with respect to a particular set of 
test data. This evaluation may be done by conducting a suitably 
designed set of empirical investigations or model fit studies. 
Also, a logical analysis of the model assumptions in relation to 
the test data can be conducted to address the viability of the 
model. For example, with a test containing multiple-choice 
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items and where considerable guessing is expected (perhaps 
because the test is quite difficult), a test model based on the 
assumption that true scores and error scores are uncorrelated 
may not be viable. It would be quite reasonable to expect error 
scores to be smaller for high-ability examinees and larger for 
low-ability examinees. Such a finding would be a violation of 
the assumption; hence, a model incorporating this assumption 
would, other things being equal, be less useful for the situation 
described than a model that made a more plausible assumption 
about the relationship between true scores and error scores. 

In the strict sense, models always provide incomplete repre­
sentations of the test data to which they are fit; hence, with 
sufficient amounts of test data, they can be falsified, that is, 
found to be misfitting. Therefore, the meaningful question is 
not whether a model is correct or incorrect: All models are 
incorrect in the sense that they provide incomplete representa­
tions of the data to which they are applied. The question 
instead is whether a model fits the data well enough to be 
useful in guiding the measurement process. Statistical evi­
dence and judgment play important roles in answering the 
question. 

Classical test models are often referred to as "weak models" 
because the assumptions of these models are fairly easily met 
by test data. (Though it must be mentioned that not all models 
within a classical test theoretic framework are "weak." Models 
such as the binomial test model, which are based upon a fairly 
restrictive assumption about the distribution of error scores, 
are considered "strong models.") Item r'lsponse models are 
referred to as strong models too, because the underlying 
assumptions are stringent'and therefore less likely to be met 
with test data. For example, the popular one-, two-, and 
three-parameter logistic models make the strong assumption 
that the set of items that compose the test are measuring a 
single common trait or ability. Classical test models do not 
make such a strong assumption. It is only necessary to assume 
that the factor structure, whatever it is, is common across 
parallel forms. 

What follows are presentations of classical test theory and 
item response theory and their related models and concepts, 
and a comparison of the two statistical frameworks. First, 
however, a few words about the desirability of test theories and 
models are offered. 

Importance of Test Theories and Models 
Test theories and related models are important to the practice 
of educational and psychological measurement because they 
provide a framework for considering issues and addressing 
technical problems. One of the most important issues is the 
handling of measurement errors. A good theory or model can 
help in understanding the role that measurement errors play in 
(a) estimating examinee ability and how the contributions of 
error might be minimized (e.g., lengthening a test), (b) correla­
tions between variables (see for example the disattenuation 
formulas), and (c) reporting true scores or ability scores and 
associated confidence bands. Different theories and models will 
handle errors differently. For example, errors might be as­
sumed to be normally distributed in one model, whereas no 
distributional assumptions about errors are made in another. 
In one model, the size of measurement errors might be 
assumed to be constant across the test-score scale (i.e., the 
standard error of measurement). In another, the size of errors 
might be assumed to be related to the examinee's true score 
(i.e., the binomial error model). The specifications about error 
in a model will have substantial impact on how error scores are 
estimated and reported. 

A good test theory or model can also provide a frame of 
reference for doing test design work or solving other practical 
problems. A good test model might specify the precise relation­
ships among test items and ability scores so that careful test 
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design work can be done to produce desired test score distribu­
tions and errors of the size that can be tolerated. For example, 
in computer adaptive testing, a test model that closely links 
ability estimates to item statistics is needed to guide the item 
selection process. Items should be selected at any point in the 
testing process that provides maximum information about 
examinee ability. In this application, a model is needed that 
places persons and items on a common scale·(this is done with 
item response theory models). In this way, at each stage in the 
computer adaptive testing process, items can be selected that 
provide the most useful information about examinee ability. 

Classical Test Theory and Related Models 
Classical test theory is a theory about test scores that intro­
duces three concepts-test score (often called the observed 
score), true score, and error score. Within that theoretical 
framework, models ofvarious forms have been formulated. For 
example, in what is often referred to as the "classical test 
model," a simple linear model is postulated linking the observ­
able test score (X) to the sum of two unobservable (or often 
called latent) variables, true score (T) and error score (E), that 
is, X = T + E. Because for each examinee there are two 
unknowns in the equation, the equation is not solvable unless 
some simplifying assumptions are made. The assumptions in 
the classical test model are that (a) true scores and error scores 
are uncorrelated, (b) the average error score in the population 
of examinees is zero, and (c) error scores on parallel tests are 
uncorrelated. In this formulation, where error scores are 
defined, true score is the difference between test score and 
error score. True scOre is easily shown to be the expected test 
score across parallel forms. In other formulations of this model 
(see for example Lord & Novick, 1968), true score is defined as 
the expected test score over parallel forms, and then the 
resulting properties of error are derived. In either case, the 
resulting model is the same and has found wide-spread use in 
testing practice. Some researchers prefer the latter formula­
tion because it results in defining the concept of central 
interest, true score, rather than having it obtained as the 
difference between test score and error score. Gulliksen (1950) 
actually derived the basic results from the classical test model 
from both formulations. 

About the only definition that is needed is a definition of 
parallel forms. Parallel forms are defined as tests that measure 
the same content and for which examinees have the same true 
score, and where the size of the errors of measurement across 
forms are equal. Of course, implicit in the definition of parallel 
forms is the assumption that parallel forms of a test can be 
constructed. From this modest model, set of assumptions, and 
definition, most of the test formulas and results that are 
sprinkled through tests and measurement texts were gener­
ated. To this day, many important tests are constructed from 
the classical test model. Important results that derive from the 
model (such as the generalized Spearman-Brown formula, the 
formula for linking test length to test validity, and the disatten­
uation formulas) are well-known and commonly used in testing 
practice. 

To derive other models within the framework of classical 
test theory, researchers have moved in many directions includ­
ing dropping or revising one or more of the basic assumptions, 
or adding distributional assumptions about error and true 
scores. For example, the assumption that the distribution of 
errors follows a binomial distribution (i.e., the binomial test 
model) or a normal distribution has been common (see Crocker 
& Algina, 1986). The binomial test model has been particularly 
useful in addressing technical problems that have arisen with 
criterion-referenced measurement. This model is used in deter­
mining test length, assessing reliability, and assessing mastery. 
With still other models, the definition of parallel forms has 
been weakened (i.e., the requirement that true scores should be 
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equal across parallel forms has been replaced by a model in 
which all that is required is that true scores across parallel­
forms be linearly related). Still other researchers have ex­
tended classical test models to specify in considerable detail the 
error score by identifying components of error (such as errors 
resulting from the scorer, item format, and the particular t€st 
administration) and then designing studies to assess these 
components and their impact on test score variance and test 
reliability (see for example Shavelson & Webb, 1991). In sum, 
the field of classical test theory is served by a variety of models. 

Most of the work in classical test theory has focused on 
models at the test-score level (in contrast to item response 
theory). That is, the models have linked test scores to true 
scores rather than item scores to true scores. However, item 
statistics that represent item difficulty (often denoted p) and 
item discriminating power (often denoted r) have been devel­
oped, and their connection to test statistics such as test-score 
mean, standard deviation, and reliability are well-known and 
are used in the test development process to produce tests with 
the desired statistical properties. Readers are referred to 
excellent chapters by Henrysson (1971) and Millman and 
Greene (1989) for specifics on how item statistics are defined 
and used in test development. Suffice it to say here that these 
item statistics (and their variations) have proven valuable in 
the test development process. Still, one main shortcoming is 
that they are sample dependent, and this dependency reduces 
their utility. They are most useful when the examinee sample is 
similar to the examinee population for whom the test is being 
developed. To the extent that the sample differs in some 
unknown way from the population, and this could easily 
happen in a field test, the utility of the item statistics may be 
reduced. The use of some "anchor items" in a field test that 
also appeared in an actual test administration can be used to 
partially resolve sampling problems but relationships are typi­
cally nonlinear, which complicates any analyses. 

Advantages of many classical test models are that they are 
based on relatively weak assumptions (i.e., they are easy to 
meet in real test data) and they are well-known and have a long 
tracK record. On the other hand, both person parameters (i.e., 
true scores) and item parameters (i.e., item difficulty and item 
discrimination) are dependent on the test and the examinee 
sample, respectively, and these dependencies can limit the 
utility of the person and item statistics in practical test 
development work and complicate any analyses. 

Item Response Theory and Related Models 
Item response theory is a general statistical theory about 
examinee item and test performance and how performance 
relates to the abilities that are measured by the items in the 
test. Item responses can be discrete or continuous and can be 
dichotomously or polychotomously scored; item score catego­
ries can be ordered or unordered; there can be one ability or 
many abilities underlying test performance; and there are 
many ways (i.e., models) in which the relationship between 
item responses and the underlying ability or abilities can be 
specified. Within the general IRT framework, many models 
have been formulated and applied to real test data (see 
Hambleton, 1989, for a review). In this module, only a few of 
the models that (a) assume a single ability underlies test 
performance, (b) can be applied to dichotomously scored data, 
and (c) assume the relationship between item performance and 
ability is given by a one-, two-, or three-parameter logistic 
function will be considered. Typically, two assumptions are 
made in specifying IRT models: One relates to the dimensional 
structure of the test data, and the other relates to the 
mathematical form of the item characteristic function or curve 
(denoted ICC). 

Figure 1 shows the general form of item characteristic 
functions with the three-parameter logistic model. Item charac-
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FIGURE 1. A three-parameter logistic model item charac­
teristic curve 

teristic functions are generated from the expression 

Pi (O) = ci+ (1 - ci)[l + e-Dai (8- bi)] - 1, i = 1,2, ... , n, 

which serves as the mathematical model linking the observable 
data (item performance) to the unobservable data (ability). 
Pi(O) gives the probability of a correct response to item i as a 
function of ability (denoted 0). The symbol "n" is the number 
of items in the test. The c parameter in the model is the height 
of the lower asymptote of the ICC and is introduced into the 
model to account for the performance of low-ability examinees 
on multiple-choice test items. This parameter is not needed in 
the model with free-response data. The b parameter is the point 
on the ability scale where an examinee has a (1 + c)/2 
probability of a correct answer. The a parameter is propor­
tional to the slope ofthe ICC at the point b on the ability scale. 
In general, the steeper the slope, the higher the a parameter. 
The item parameters, b, a, and c, are correspondingly referred 
to as the item difficulty, item discrimination, and pseudoguess­
ing parameters. The "D" in the model is simply a scaling 
factor. By varying the item parameters, many S-shaped curves 
or ICCs can be generated to fit actual test data. Simpler logistic 
test models can be obtained by setting Ci = 0 (the two­
parameter model) or setting Ci = 0 and ai = 1 (the 
one-parameter model). Thus, three different logistic models 
may be fit to the test data. A typical set of ICCs is shown in 
Figure 2. The corresponding item statistics for the items 
appear in Table 1. For more details, readers are referred to 
Hambleton (1989) or Harris (1989). 

Some ofthe flexibility of item response theory arises because 
the models link item responses to ability, and item statistics are 
reported on the same scale as ability. This is not the case in 
classical test theory. The flexibility comes through knowing 
precisely where an item is doing its best measurement on the 
ability scale, and knowing the exact relationship between item 
performance and ability. 

One useful feature is that of the test characteristic function 
represented in Figure 3. It is the sum ofthe item characteristic 
functions that makes up a test and can be used to predict the 
scores of examinees at given ability levels. If the test is made up 
of test items that are relatively difficult, then the test 
characteristic function is shifted to the right and examinees 
tend to have lower expected scores on the test than if easier test 
items are included. Thus, it is possible through the test 
characteristic function to explain how it is that examinees with 
a fixed ability can perform differently on two tests measuring 
the same ability, apart from the ubiquitous error scores. The 
test characteristic function connects ability scores in item 
response theory to true scores in classical test theory because 
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an examinee's expected test score at a given ability level is by 
definition the examinee's true score on that set of test items. 

Another feature of item response theory models is the 
existence of item information functions. In the case of the 
simple logistic models, item information functions show the 
contribution of particular items to the assessment of ability. In 
general, items with high discriminating power contribute more 
to measurement precision than items with lower discriminat-

Table 1 
Item Statistics for the 12-Item Bank 

Item statistic 

Item b a c 

1 -0.81 1.55 .19 
2 0.31 1.78 .17 
3 0.00 0.88 .07 
4 0.45 0.36 .04 
5 -2.41 0.46 .08 
6 -1.30 1.24 .05 
7 2.23 0.61 .03 
8 1.00 1.85 .08 
9 1.40 1.01 .03 

10 -1.95 0.85 .14 
11 2.56 1.44 .13 
12 1.10 1.33 .08 
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ing power, and items tend to make their best contribution to 
measurement precision around their b value on the ability 
scale. Figure 4 shows the item information functions that 
correspond to the items shown in Figure 2. Notice for example 
that Item 2 is more difficult than Item 1; hence, the item 
information function for Item 1 is centered at a lower ability 
level than the item information function for Item 2. Also, 
because Items 3 and 4 are less discriminating than Items 1 and 
2 (see Figure 2), the corresponding item information functions 
are lower than for Items 1 and 2. 

Another special feature of item response models is the 
concept of a test information function, denoted 1(8). It is the 
sum of item information functions in a test and provides 
estimates of the errors associated with (maximum likelihood) 
ability estimation, specifically, 

1 
SE(8) = [1(8)]1/2 

This means that the more information provided by a test at a 
particular ability level, the smaller the errors associated with 
ability estimation. Figure 5 provides the test information 
function for the 12 items shown in Table 1. This test provides 
more precise estimates of ability near 8 = 1.0 than other points 
on the ability scale. The presence of item and test information 
functions substantially alters the ways in which tests are 
constructed within an item response theory framework. These 
points are developed later in the module. 

Item and test characteristic functions and item and test 
information functions are integral features of item response 
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theory models, and they are immensely useful. However, the 
essential property of these functions is what is important; that 
is, model-parameter invariance. Figure 6 represents the 
situation highlighting item-parameter invariance. Notice that, 
for Groups 1 and 2, the same item characteristic function 
applies. For each ability level, there is a probability of a correct 
response. Of course, that probability does not and should not 
depend on the number of examinees in each group at that 
ability level. In that sense, the ICC applies equally well to both 
groups. Were classical statistics for the item shown in Figure 6 
computed, the item would be easier and more discriminating in 
Group 2 than in Group 1. It can also be shown that person 
parameters or abilities are estimated independently of the 
particular test items, and this is accomplished by incorporating 
the item statistics into the ability estimation process. Of 
course, the property of model parameter invariance is only 
obtained with models that fit the test data to which they are 
applied. 

In recent years, the number of item response theory models 
has expanded to handle the diverse types of data that are being 
produced by more performance-oriented tests. Models to 
handle polychotomous data (i.e., the partial credit model and 
the graded-response model) as well as models to handle 
multidimensional data are now being widely researched, and 
the former models in particular are being used with perfor­
mance data, such as writing assessments. 

Like the classical test models, item response theory models 
are in wide use in test development, equating test scores, 
identifying item bias, and scaling and reporting scores. These 
models are being used by many national and state organiza­
tions, and even large school districts. 

Comparison of Theories and Models 
In the two previous sections many points of similarity and 
difference between classical test theory and item response 
theory were highlighted. Table 2 provides a summary orga­
nize.d around eight areas. A few additional points follow. 

The relationship between item difficulty and discrimination 
parameters in the classical test model and the two-parameter 
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FIGURE 6. Item characteristic curve and ability distribu­
tions for two groups of examinees 
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Table 2 
Main Differences Between Classical and Item Response Theories and Models 

Area Classical test theory Item response theory 

Model Linear 
Test . 

Nonlinear 
Item Level 

Assumptions Weak (i.e., easy to meet with test 
data) 

Strong (i.e., more difficult to meet 
with test data) 

Not specified Item characteristic functions Item-ability relationship 
Ability 

I nvariance of item and person 
statistics 

Test scores or esti mated true scores 
are reported on the test-score scale 
(or a transformed test-score scale) 

No-item and person parameters 

Ability scores are reported on the 
scale -00 to +00 (or a transformed 
scale) 

Yes-item and person parameters 
are sample independent, if model 
fits the test data 

are sample dependent 

Item statistics 

Sample size (for item parameter 
estimation) 

p, r 

200 to 500 (in general) 

logistic model is discussed by Lord (1980). He shows that, 
under certain conditions (such as examinee performance not 
being affected by guessing), the item-test biserial correlation 
used within the framework of classical measurement theory 
and the item discrimination parameter of item response theory 
are approximately monotonically increasing functions of each 
other. This relationship may be represented as: 

ri 

where 

ai = item discrimination parameter value for item i used in 
IRTand 

ri = item biserial correlation. 

The relationship is approximate rather than accurate as a 
consequence of the different distributions and assigned scores 
of the two models. The number correct score (X) of classical 
test theory and the ability score (9) of item response theory 
have distributions with different shapes, and the relationship 
between X and 9 is nonlinear. Furthermore, the total test score 
X is subject to errors of measurement, whereas the ability score 
9 is not (Lord, 1980). 

Lord describes a similar monotonic relationship between Pi 
and bi when all items are equally discriminating (such as in the 
Rasch model) so that as Pi increases bi decreases. If items have 
unequal discrimination values, then the relationship between 
Pi and bi will depend on ri (Lord, 1980). This relationship may 
be represented as: 

where 

bi = item difficulty parameter value for item i used in IRT 
and 

'{i =7 normal deviate corresponding to the ability score 
beyond which Pi of the examinee sample fall. 

Perhaps the most important distinction between classical 
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b, a, and c (for the three-parameter 
model) plus corresponding item 
information functions 

Depends on the IRT model but larger 
samples, i.e., over 500, in general, 
are needed 

and modern test theories is that inherent within item response 
theory is the property of invariance of both item parameters 
and ability parameters. The consequences of this property are 
(a) those parameters that characterize an examinee are 
independent of the test items from which they are calibrated 
and (b) those parameters that characterize an item are 
independent of the ability distribution of the set of examinees 
(Hambleton, Swaminathan, & Rogers, 1991). 

Classical test theory has a number of important limitations. 
First and foremost is that the two statistics (item difficulty and 
item discrimination) that form the cornerstones of many 
classical test theory analyses are group dependent. Thus, the P 
and r values, so essential in the application of classical test 
models, are entirely dependent on the examinee sample from 
which they are obtained. In terms of discrimination indices, 
this means that higher values will tend to be obtained from 
heterogeneous examinee samples, and lower values from 
homogeneous examinee samples. In terms of difficulty indices, 
higher values will be obtained from examinee samples of 
above-average ability and lower values from examinee samples 
of below-average ability (Hambleton, 1989). 

Another limitation of classical test theory is that scores 
obtained by classical test theory applications are entirely test 
dependent. Consequently, test difficulty directly affects the 
resultant test scores. This is an important shortcoming 
because the practical constraints of measurement practice 
frequently necessitate that examinees from a single population 
be compared using results obtained from different test items as 
a result of having been administered different forms of the 
same test, or at least different subtests. Indeed, classical test 
theory may be described as "test based," whereas IRT may be 
described as "item based." The true-score model upon which 
much of classical test theory is based permits no consideration 
of examinee responses to any specific item. Consequently, no 
basis exists to predict how an examinee, or a group of 
examinees, may perform on a particular test item. Conversely, 
item response theory allows the measurement specialist 
greater flexibility. A broader range of interpretations may be 
made at the item level. Thus, item response theory permits the 
measurement specialist to determine the probability of a 
particular examinee correctly answering any given item. This 
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has obvious advantages if a test developer needs to know the 
characteristics of the test scores of one or more examinee 
populations. Similarly, if it is necessary to design a test with 
particular inherent characteristics for a specific examinee 
population, item response models permit the test developer to 
do just that (Hambleton, Swaminathan, & Rogers, 1991). The 
need to build such tests is common: for example, a test built to 
discriminate among less-able students to sl}lect candidates for 
limited special-needs resources or a test built to discriminate 
among more-able students for the award of a scholarship. In 
particular, this property of item response theory is invaluable 
for certain modern testing applications, such as computerized 
adaptive testing. 

Item response models have technical and practical shortcom­
ings, too. On the technical side, item response theory models 
tend to be complex, and model parameter estimation problems 
tend to arise in practice. Model fit too can be a problem-it is 
still not completely clear how problems of model fit should be 
addressed, especially problems that relate to test dimensional­
ity. On the practical side, almost regardless of application, the 
technical demands tend to be more complex than the demands 
that arise with classical models. The one-parameter item 
response theory model certainly is more straightforward to 
apply than the other item response theory models (and the 
software, in general, is user-friendly). On the other hand, 
questions arise about the fit of the one-parameter model 
because of the restrictiveness of the model assumptions. 

An awareness of the shortcomings of classical test theory 
and the potential benefits offered by item response theory has 
led some measurement practitioners to opt to work within an 
item response theory framework. The reason for this change of 
emphasis by the psychometric and measurement community 
from classical to item response models is as a consequence of 
the benefits obtained through the application of item response 
models to measurement problems. These benefits include: 

1. Item statistics that are independent of the groups from 
which they were estimated. 

2. Scores describing examinee proficiency that are not 
dependent on test difficulty. 

3. Test models that provide a basis for matching test items 
to ability levels. 

4. Test models that do not require strict parallel tests for 
assessing reliability. 

Benefits obtainable through the application of classical test 
models to measurement problems include: 

1. Smaller sample sizes required for analyses (a particu­
larly valuable advantage for field testing). 

2. Simpler mathematical analyses compared to item re­
sponse theory. 

3. Model parameter estimation is conceptually straightfor­
ward. 

4. Analyses do not require strict goodness-of-fit studies to 
ensure a good fit of model to the test data. 

Test Development 
Figure 7 displays the typical steps in test development. Impor­
tant differences between test development using classical and 
item response measurement theories occur at Steps 3, 5, and 9. 
Discussion within this module will focus on item analysis and 
the selection of items for a test (see also Yen, 1983). 

Classical Test Theory 
Item analysis. When employing the standard test develop­

ment techniques of classical test theory, item analysis consists 
of (a) determining sample-specific item parameters by employ­
ing simple mathematical techniques and moderate sample 
sizes, and (b) deleting items based on statistical criteria. 
Standard item analysis techniques involve an assessment of 
item difficulty and discrimination indices and item distractors. 
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1. Preparation of test specifications 
2. Preparation of the test item pool 

*3 . Field testing the items 
4. Revision of the test items 

*5 . Test development 
6. Pilot testing 
7. Final test development 
8. Test administration (for norming and 

technical data) 
*9. Technical analyses (e.g., compiling 

norms, setting standards, equating scores, 
reliability and validity studies) 

10. Preparation of administrative instructions 
and technical manual 

11 . Printing and distribution of tests and 
manuals. 

*Important differences in test development using 
classical test theory and item response theory occur 
at Steps 3, 5, and 9. 

FIGURE 7. Steps in test development 

Because item statistics depend to a great extent on the 
characteristics of the examinee sample used in the analysis, an 
important concern of test developers applying classical test 
theory is that the examinee sample should be representative of 
the overall population for whom the test is intended. Heteroge­
neous samples will, generally, result in higher estimates of 
item discrimination indices as measured by point-biserial or 
biserial correlation coefficients, whereas item difficulty esti­
mates rise and fall with high- and low-ability groups, respec­
tively. Despite the inherent difficulty of obtaining a 
representative sample, an advantage of this approach to item 
analysis is that item statistics can be accurately calibrated on 
examinee samples of modest size. 

Detection of poor items (at least for norm-referenced tests) is 
quite straightforward and is basically accomplished through 
careful study of item statistics. A poor item is identified by an 
item difficulty value that is too high or too low, or a low 
item-total score correlation. It is appropriate to point out that 
classical item analysis procedures, together with an analysis of 
distractors, have the potential to provide the test developer 
with invaluable information concerning test item quality regard­
less of which measurement model is applied in the later stages 
oftest development. 

Item selection. When applying test development techniques, 
in addition to concerns for content validity, items are selected 
on the basis of two characteristics: item difficulty and item 
discrimination. An attempt is always made to choose items 
with the highest discrimination parameters. The choice level of 
difficulty is usually governed by the purpose of the test and the 
anticipated ability distribution of the group for whom the test 
is intended. For example, it may be the case that the purpose of 
a test is to select a small group of high-ability examinees for the 
award of a scholarship. In this situation, items are generally 
selected that are quite difficult for the population at large. Most 
norm-referenced achievement tests are commonly designed to 
differentiate examinees with regard to their competence in the 
measured areas: That is, the test is designed to yield a broad 
range of scores maximizing discriminations among all examin­
ees taking the test. When a test is designed for this purpose, 
items are generally chosen to have a medium level and narrow 
range of difficulty. 
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Item Response Theory 
Item analysis. When employing item response theory, item 

analysis consists of (a) determining sample-invariant item 
parameters using relatively complex mathematical techniques 
and large sample sizes, and (b) utilizing goodness-of-fit criteria 
to detect items that do not fit the specified response model. The 
property of sample invariance inherent within IRT means that 
test developers do not need a representative sample of the 
examinee population to calibrate test items. They do, however, 
need a heterogeneous and large examinee sample to insure 
proper item parameter estimation. As can be seen from Figure 
6, even when examinee samples differ, the test developer is able 
to use the principles of IRT to estimate the same ICC regard­
less of the examinee sample used in the item calibration 
process. However, the test developer using IRT is faced with a 
different problem. Because IRT requires larger sample sizes to 
obtain good item parameter estimates, the test developer must 
ensure that the examinee sample is of sufficient size to 
guarantee accurate item calibration. 

The detection of poor items using item response theory is not 
as straightforward as when classical test theory is used. Items 
are generally evaluated in terms of their goodness-of-fit to a 
model using a statistical test or an analysis of residuals. 
Although this is not the appropriate article to discuss goodness­
of-fit procedures, it is important to emphasize that an adequate 
fit of model-to-data is essential for successful item analysis; 
otherwise, items may appear poor as an artifact of poor model 
fit. Readers wishing to learn more about goodness-of-fit tech­
niques are referred to Hambleton, Swaminathan, and Rogers 
(1991, chapter 4) and Hambleton and Murray (1983). Poor 
items are usually identified through a consideration of their 
discrimination indices (the value of ai will be a low positive or 
even negative) and difficulty indices (items should be neither 
too easy nor too difficult for the group of examinees to be 
assessed). 

Item selection. As is the case with classical test theory, item 
response theory also bases item selection on the intended 
purpose of the test. However, the final selection of items will 
depend on the information they contribute to the overall 
information supplied by the test. A particularly useful feature 
of the item information functions used in IRT test development 
is that they permit the test developer to determine the contribu­
tion of each test item to the test information function indepen­
dently of other items in the test. Lord (1977) outlined a 
procedure, originally conceptualized by Birnbaum (1968), for 
the use of item information functions in the test building 
process. Basically, this procedure entails that a test developer 
take the following four steps: 

1. Describe the shape of the desired test information 
function over the desired range of abilities. Lord (1977) 
calls this the target information function. 

2. Select items with item information functions that will 
fill up the hard-to-fill areas under the target information 
function. 

3. After each item is added to the test, calculate the test 
information function for the selected test items. 

4. Continue selecting test items until the test information 
function approximates the target information function 
to a satisfactory degree. 

For example, suppose a test developer wished to build a test 
to fill the target information function shown in Figure 5. The 
first step would be to specify this information function as the 
target information function. The next step would be to add an 
item to the test, filling up the hard-to-fill areas first. Item 2 in 
Figure 4 would be a good choice, followed by Item 1. The test 
information function should be recalculated after the addition 
of each item so as to identify the specific information required 
to complete the test. By following this procedure, and selecting 
the 12 items in Table 1, the test developer would create the 
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ideal test to match the target information function shown in 
Figure 5. Content validation considerations are monitored 
during the item selection process. 

This procedure allows the test developer to build a test that 
will precisely fulfill any set of desired test specifications. Thus 
it is possible to build a test that "discriminates" well at an; 
particular region on the ability continuum. That is to say, if we 
have a good idea of the ability of a group of examinees test 
items can be selected so as to maximize test information i~ the 
region of ability spanned by the examinees being tested. Of 
course, this optimum selection of test items will contribute 
substantially to the precision with which ability scores are 
estimated. Furthermore, with criterion-referenced tests, it is 
common to observe lower test performance on a pretest than 
on a posttest. Given this knowledge, a test instructor should 
select easier items for the pretest and more difficult items for 
the posttest. Then, for both testing administrations, measure­
ment precision will have been maximized in the ability region 
where the examinees would most likely be located. Moreover, 
be~~use it~ms on bot.h tests measure the same ability, and 
abIlIty estImates are mdependent of the particular choice of 
test items, the instructor can measure growth by subtracting 
the pretest ability estimate from the posttest ability estimate. 

1. 

2. 

3. 

4. 

5. 

a. 

b. 
a. 

b. 

a. 

b. 

a. 

Self-Test 
What are the item statistics used in the classical test 
theory model and the two-parameter logistic model? 
How are they related? ' 
List the expected. benefits when an item response 
model is applied to a measurement problem. 
List the expected benefits when a classical test 
model is applied to a measurement problem. 
What are the basic assumptions of the classical test 
theory model? 
What are the basic assumptions of item response 
theory models? 
Estimate the item difficulty and pseudoguessing 
parameter values for the four items in Figure 2. 
Suppose Figure 4 presents the item information 
functions for four reading items. If you were a test 
developer tasked with selecting an item for use in a 
test for a remedial reading population, which of the 
four items would you choose for inclusion in the 
test? Why? 

b. Which of the four items would you choose if you 
were building a test to discriminate among more 
able readers? Why? 

6. a. An item has b = 1.0, a = 0.8, and c = 0.2. Calculate 
p(e) at e = -3, -2, -1,0, 1,2, and 3. 

b. Repeat this procedure for a second item: b = 0.5, a = 
0.6, c = 0.15. 

c. Sketch the ICCs for the two items (that is, plot the 
probability of success as a function of ability for each 
test item). Which of the two items would an exam­
inee with an ability of 1.0 have the greatest probabil­
ity of answering correctly? 

7. a. A subtest is composed of the five items whose item 
information values at seven ability levels are shown 
as follows: 

Ability level 

Item -3 -2 -1 0 1 2 3 

1 .01 .25 .50 .70 .83 .65 .40 
2 .05 .35 .70 .85 .70 .35 .05 
3 .10 .30 .40 .45 .10 .05 .01 
4 .10 .30 .40 .45 .40 .30 .10 
5 .40 .65 .83 .70 .50 .25 .01 
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What is the subtest information function at each 
ability level? 

b. If practical test construction constraints required 
the size of the subtest to be reduced to only four 
items, which item should be removed? 

Answers to Self-Test. 
1. a. Classical test theory model: item difficulty (p) and 

item discrimination (r). 
Two-parameter logistic model: item difficulty (b) and 
item discrimination (a). 

b. When r is high, so is a; when r is low, so is a; there is 
a monotonically increasing relationship between the 
two. On the other hand, p and b are inversely 
related. If ability is normally distributed, and the 
two-parameter logistic model fits the test data, there 
are specific formulas linking r to a and p to b. See 
Lord and Novick (1968, p. 378) for the formulas. 

2. a. (a) Item statistics are independent of the groups 
from which they were estimated; (b) scores describ­
ing examinee proficiency are not dependent on test 
difficulty; (c) test models that provide a basis for 
matching test items to ability levels where they 
function best. 

b. (a) Well-known models that have been useful for a 
long time; (b) weak assumptions, hence the useful 
formulas are widely applicable. 

3. a. In wha~ is often called the classical test model, 
basically, there are three assumptions, in addition to 
the model itself: 

X=T+E 

and 

PTE = 0, E = 0, and peEl, Ez) = ° 
b. Assumptions are made about (a) dimensionality 

(usually, that the test measures one dimension or 
trait), and (b) the mathematical form of the item 
characteristic function (or curve). (For dichoto­
mously scored items, logistic functions are common.) 

4. The item statistics for the four items in Figure 2 are: 

Pseudoguessing 
parameter 

Item 
Item difficulty 

(b) (c) 

1 
2 
3 
4 

-0.81 
0.31 
0.00 
0.45 

.19 

.17 

.07 

.14 

5. a. Item 1. Of the four items, Item 1 provides the most 
information at lower ability levels. 

b. Item 2. Of the four items, Item 2 provides the most 
information at higher ability levels. 

6. Here are the probabilities: 

Item 

6a 
6b 

-3 

.203 

.173 

-2 

.213 

.212 

Ability level 

-1 0 1 

.249 

.301 
.363 
.469 

.600 

.681 

c. Item 6b. See Figure 8. 

2 

. 837 

.849 

3 

.951 

.938 

7. a The subtest information function at the seven ability 
levels is: 
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Ability level 

-3 -2 -1 0 1 2 3 

Information .66 1.85 2.83 3.15 2.53 1.60 .57 

c 
0 

0.8 

0.6 

0.4 

0 .2 

a 

b. Item 3. This item provides the least amount of 
information over the ability range of interest. 

Sa 

-3 -2 -1 a 
Ability 

2 3 

FIGURE 8. Plot of item characteristic curves for questions 
6a and 6b ' 
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1992 - 1993 

Information in this latest edition of the 
biennial Membership Directory is based on 
Membership files. It includes: 

• NCME By-Laws 
• Member name, address, telephone number 
• Electronic network address 
The price is $6, which includes postage and 
handling. Orders must be prepaid or an 
invoicing fee of .$4 will be charged. Order 
from: NCME Publications Sales, 1230 17th 
Street, NW, Washington, DC 20036-3078 

1994 ELECTIONS 
The NCME Nominations Committee is pleased to 
nominate the following candidates for the 1994 
elections: 

For Vice President 
Joy Frechtling, WESTAT 

Brenda Loyd, University of Virginia 

For Board of Directors 
At Large 

John Fremer, ETS 
Suzanne Lane, University of Pittsburgh 

Local Educational Agency 
Joe Hansen, Colorado Springs Public Schools 

Carole Perlman, Chicago Public Schools 

Directors serve a 3-year term; one person is to be 
elected from each category. 

Nominations can also be made by NCME mem­
bers. The bylaws state that "other nominations may 
then be submitted by the written request of at least 
ten active or emeritus members, ~rovided such 
nominations are received before December 1." 
Send nomination petitibns to NCME, 1230 17th St., 
NW, Washington, DC 20036-3078. Ballots will be 
mailed to members in late December 1993. 

CALL FOR AWARD NOMINATIONS 

NCME Award for Career Contributions to 
Educational Measurement 

The award is to honor persons whose contributions over a 
career have had widespread positive impact on the field of 
educational measurement through (a) theoretical or techni­
cal developments, (b) influential ideas or conceptions, (c) 
unique efforts that have increased public understanding of 
the field, and/or (d) development of procedures, instru­
ments, or programs of special significance. Nominations are 
limited to living persons. 

Nominations should consist of a 1- to 2-page written 
statement describing the nature, importance, and impact of 
the individual's contribution. Mail nominations to Barbara S. 
Plake, 135 Bancroft Hall, University of Nebraska, Lincoln, NE 
68588-0348. 

Nominations for the 1994 award must be received by 
january 3, 1994. The 1994 award will be announced at the 
Annual Meeting in New Orleans. 

NCME Award for Technical Contribution to 
Educational Measurement 

This year (1993-94) NCME will be making its fourth 
triennial award for outstanding technical or scientific contri­
bution to the field of educational measurement. 
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Examples of technical contributions include, but are not 
limited to, innovative ways of solving practical or theoretical 
measurement problems, inventive instrument development 
techniques, creative testing procedures or products, and 
scientific contributions to measurement research methodol­
ogy. Selection criteria are quality, inventiveness, and positive 
impact of the technology on the field of educational measure­
ment. The past award recipients are Kikumi K. Tatsuoka, 
University of Illinois (1985); Robert Mislevy, Albert Beaton, 
Eugene johnson, Educational Testing Service (1988); and 
Fumiko Samejima, University of Tennessee (1991). 

To be eligible for this award, the technical contribution 
must have occurred initially during 1991, 1992, or 1993. The 
work must appear in a research publication, but not necessar­
ily an NCME publication. One may nominate one's own 
contribution or, with permission, someone else's. A nomina­
tion should consist of five copies of a 3- to 5-page statement 
describing the technology, application area, and products or 
results of the effort. Finalists may be requested to submit 
additional information. 

Mail nominations to Suzanne Lane, Awards Committee 
Chair, 5C01 Forbes Quadrangle, University of Pittsburgh, 
Pittsburgh, PA 15260. Nominations for the award must be 
received by january 14,1994. The award will be presented at 
the 1994 NCME Annual Meeting in New Orleans. 
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